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Abstract

The problem of coordination in cooperative multiagent
systems has been widely studied in the literature. In
practical complex environments, the interactions among
agents are usually regulated by their underlying network
topology, which, however, has not been taken into con-
sideration in previous work. To this end, we firstly in-
vestigate the multiagent coordination problems in coop-
erative environments under the networked social learn-
ing framework focusing on two representative topolo-
gies: the small-world and the scale-free network. We
consider a population of agents where each agent in-
teracts with another agent randomly chosen from its
neighborhood in each round. Each agent learns its pol-
icy through repeated interactions with its neighbors via
social learning. It is not clear a priori if all agents can
learn a consistent optimal coordination policy and what
kind of impact different topology parameters could have
on the learning performance of agents. We distinguish
two types of learners: individual action learner and
joint action learner. The learning performances of both
learners are evaluated extensively in different coopera-
tive games, and the influence of different factors on the
learning performance of agents is investigated and ana-
lyzed as well.

1 Introduction
In multiagent systems (MASs), one key property of an agent
is to be able to adaptively adjust its behaviors according to
others’ behaviors to achieve effective coordination on desir-
able outcomes. One central and widely studied class of co-
ordination problem is how to coordinate within cooperative
MASs, in which the agents share common interests (Claus
and Boutilier 1998; Matignon, Laurent, and For-Piat 2012).
In cooperative MASs, the agents share common interests
and the same reward function, and the increase in individ-
ual satisfaction also results in the increase in the satisfaction
of the group.

Until now, various multiagent reinforcement learning al-
gorithms (Claus and Boutilier 1998; Lauer and Riedmiller
2000; Kapetanakis and Kudenko 2002; Wang and Sandholm
2002; Brafman and Tennenholtz 2004; Matignon, Laurent,
and For-Piat 2012) have been proposed to tackle the co-
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ordination problem in cooperative MASs. The most com-
monly adopted learning framework for studying the coor-
dination problem within cooperative MASs is to consider
two (or more) players playing a repeated (stochastic) game,
in which the agents learn their optimal coordination poli-
cies through repeated interactions with the same opponent(s)
(Matignon, Laurent, and For-Piat 2012). However, in prac-
tical complex environments, it is unlikely for an agent to
always interact with the same partner, and the interacting
partners of different agents may vary frequently. The non-
fixed partner interaction adds additional complexity to the
coordination in cooperative MASs, since an agent’s policy
that achieves coordination on an optimal joint action with
one partner may fail when it comes to a different partner.
Hao and Leung [2013] make the first step in proposing the
social learning framework to investigate the multiagent coor-
dination problem in cooperative MASs in which each agent
learns its policy through repeated interactions with randomly
chosen partners. However, no underlying interaction topol-
ogy is considered in their social learning framework, which
thus cannot fully reflect the interaction in practical multia-
gent systems (Olfati-Saber, Fax, and Murray 2007). To make
the coordination techniques applicable in practice especially
for those MAS applications closely residing on existing so-
cial networks, it is important to explicitly take into consid-
eration the underlying topology of interaction environment
when desinging coordination techniques. Until now it is still
not clear a priori if and how the agents are able to coor-
dinate on and converge to optimal solutions under different
topologies, since different topologies may have predominant
impact on the coordination performance among agents. An-
other important question is what kind of impact that differ-
ent topologies and topology parameters could have on the
learning performance of agents in different cooperative en-
vironments.

To this end, in this paper, we firstly study the multiagent
coordination problem in cooperative games within the net-
worked social learning framework by taking the underlying
topology into consideration. In each round each agent inter-
acts with one of its neighbors randomly, and the interactions
between each pair of agents are modeled as two-player coop-
erative games. Each agent learns its policy concurrently over
repeated interactions with randomly selected neighbors. Un-
der the networked social learning framework, each agent



usually only has the opportunity to interact with a very small
proportion of agents and also different agents interact with
different proportions of agents depending on their own con-
nection degrees. Besides, each agent may also learn from
the experience of its neighbors. We distinguish two different
types of learning environments within the networked social
learning framework depending on the amount of informa-
tion the agents can perceive, and propose two types of learn-
ers accordingly: individual action learners (IALs) and joint
action learners (JALs). IALs learn the values of each individ-
ual action directly by considering their neighbors as part of
the environment, while JALs learn the values of each action
indirectly based on the values of the joint actions. Both IALs
and JALs employ the optimistic assumption and the FMQ
heuristic to utilize the learning experience of their own and
their neighbors. Two representative social networks models
are considered: the small-world and scale-free network. We
extensively evaluate the learning performances of both types
of learners in different types of cooperative games within the
networked social learning framework for both topologies.
The experimental results and analysis also shed light on the
impact of different factors (i.e., the underlying topology, dif-
ferent parameters, and IAL/JAL) on the learning dynamics
of agents in different cooperative games.

The remainder of the paper is organized as follows. In
Section 2, we give an overview of previous work of coor-
dination in cooperative MASs. In Section 3, the networked
social learning framework and both IALs and JALs are de-
scribed. In Section 4, we present the evaluation results of
both types of learners in different cooperative games and in-
vestigate the influence of different factors. Lastly conclusion
and future work are given in Section 5.

2 Related Work
Until now significant research efforts have been devoted to
solve the coordination problem in cooperative MASs in the
multiagent learning literature. Usually the cooperative mul-
tiagent environment is modeled as two-player cooperative
repeated (or stochastic) games. Claus and Boutilier (1998)
firstly distinguished two different types of learners (without
optimistic exploration) based on Q-learning algorithm: in-
dependent learner and joint-action learner, and investigate
their performance in the context of two-agent repeated co-
operative games. Empirical results show that both learners
can successfully coordinate on the optimal joint actions in
simple 2×2 cooperative games. However, both of them fail
to coordinate on optimal joint actions when the game struc-
ture becomes more complex i.e., the climbing game and the
penalty game. Following that, a number of improved learn-
ing algorithms have been proposed. Lauer and Riedmiller
[2000] proposed the distributed Q-learning algorithm based
on the optimistic assumption where each action’s Q-value
is updated in such a way that only the maximum payoff re-
ceived by performing this action is considered. Besides, an
additional coordination mechanism is required for agents to
avoid mis-coordination on suboptimal joint actions. The au-
thors proved that it is guaranteed to coordinate on optimal
joint actions if the cooperative game is deterministic. How-
ever, it fails when dealing with stochastic environments.

Later a number of approaches (Kapetanakis and Kudenko
2002; Matignon, Laurent, and For-Piat 2008; Panait, Sul-
livan, and Luke 2006) have been proposed to handle the
stochasticity of the games. One representative work under
this direction was that of Kapetanakis and Kudenko (2002),
who propose the FMQ heuristic to alter the Q-value estima-
tion function to handle the stochasticity of the games. Under
the FMQ heuristic, the original Q-value for each individ-
ual action is modified by incorporating the additional infor-
mation of how frequent the action receives its correspond-
ing maximum payoff. Experimental results show that FMQ
agents can successfully coordinate on an optimal joint ac-
tion in partially stochastic climbing games, but fail in fully
stochastic climbing games. Matignon et al. (2012) review
all existing independent multiagent reinforcement learning
algorithms in cooperative MASs, and evaluate and discuss
their strength and weakness. Their evaluation results show
that all of them fail to achieve coordination for fully stochas-
tic games and only recursive FMQ can achieve coordination
for 58% of the runs.

All the above previous works only focus on the case of
coordinating towards optimal joint actions in cooperative
games under the (two) fixed-agent repeated learning frame-
work. Most recently Hao and Leung (2013) have firstly pro-
posed and investigated the problem of coordinating towards
optimal joint actions in cooperative games within the so-
cial learning framework. However, in their framework, the
agents’ interactions are purely random, without considering
any underlying interaction topology, which thus fail to ac-
curatley reflect the interaction scenarios in practical MASs
(Olfati-Saber, Fax, and Murray 2007). It is not clear a priori
how the agents are able to converge to optimal solutions and
how the learning performance would be affected in different
cooperative games when different underlying topologies of
the interaction environment are considered.

3 Networked Social Learning Framework
Under the networked social learning framework, there are a
population of N agents in which each agent’s neighborhood
is determined by the underlying network topology. Each
agent learns its policy through repeated pairwise interactions
with its neighbors in the population. The interaction between
each pair of agents is modeled as a two-player cooperative
game. Each agent i knows its own action set Ai, but have
no access to their payoffs under each outcome beforehand.
During each round, each agent interacts with another agent
randomly chosen from its neighbors, and one agent is ran-
domly assigned as the row player and the other agent as the
column player. The agents are assumed to know their roles,
i.e., either as row player or column player, during each inter-
action. Without loss of generality, we assume that both the
row and column agents share the same set of actions in the
cooperative game being played. At the end of each round,
each agent updates its policy based on the learning experi-
ence it receives from the current round. The overall interac-
tion protocol under the networked social learning framework
is presented in Algorithm 1.

As previously mentioned, studies show that most of the
real-world networks are not either regular (e.g., lattice net-



work) or purely random (Wang and Chen 2003), which lead
us to think that regular or random topologies are oversimpli-
fied and thus are not the most ideal candidates for modeling
practical interactions in MASs. Therefore, in this work, we
focus on two realistic network topologies: small-world net-
works (SWN) and scale-free networks (SFN), which have
been shown to reflect a large number of real-world networks
(Albert and Barabási 2002). Besides, compared with the tra-
ditional fixed-agent repeated interaction framework, under
the networked social learning framework, the agents may
also be able to learn from their neighbors. Therefore, in Sec-
tion 3.2, we distinguish two different learning settings in
terms of the amount of information each agent can perceive.
Following that, we propose two classes of learners, individ-
ual action learners (IALs) and joint action learners (JALs)
in Section 3.3, which are applicable for the two learning set-
tings we distinguish respectively.

Algorithm 1 Overall interaction protocol of the networked
social learning framework
1: for a number of rounds do
2: for each agent in the population do
3: One neighbor is randomly chosen as its interacting part-

ner, and one of them is assigned as the row player and the
other one as the column player.

4: Both agents play a two-player cooperative game by
choosing their actions from their own action set indepen-
dently and simultaneously.

5: end for
6: for each agent in the population do
7: Update its policy based on its experience in the current

round
8: end for
9: end for

3.1 Interaction Networks

The interaction networks determine the possible interactions
among different agents and also the amount of information
each agent can perceive in the system. Different interaction
topologies may have significant influence on the collective
learning performance of agents in a cooperative multiagent
system. We consider the following two complex network
models: small-world network and scale-free network, which
are able to accurately capture the major properties of a large
variety of real-world networks (Albert and Barabási 2002).

Small-world Networks It reflects the “what a small world”
phenomenon reflected in many practical networks includ-
ing collaboration networks (e.g., the co-authorship of re-
search papers) and the social influence networks (Albert
and Barabási 2002). This kind of networks are featured
by high clustering coefficients and short average path
lengths. Another characteristic of a small-world network
is that its connectivity (degree) distribution peaks at an
average value and decays exponentially on both sides,
i.e., most of the nodes have the same number of connec-
tions. A small-world network can usually be represented
as SW k,ρ

N , where N is the size of the network, k is its
average connectivity degree and ρ is the re-wiring proba-
bility indicating the degree of the network randomness.

Scale-free Networks Different from small-world networks,
the connectivity distribution of a scale-free network fol-
lows the power law distribution, i.e., most of the nodes
have very few connections while only a few nodes have
very large connections. This kind of “scale-free” feature
has been observed in many real-world networks such as
the connection network of web pages (Barabási, Albert,
and Jeong 2000) and citation network of research papers
(Redner 1998). For each node, the probability of being
connected to k adjacent nodes is proportional to k−γ , and
we denote a scale-free network as SF γN , where N is the
network size.

3.2 Observation Mechanism
Under the networked social learning framework, each agent
interacts with one of its neighbors randomly chosen during
each round. We define each pair of interacting agents as be-
ing in the same group. Within a social learning environment,
since every agent interacts with its own interaction partner
simultaneously, different agents may be exposed to interac-
tion experience of agents from other groups through com-
munications or observations (Villatoro, Sabater-Mir, and
Sen 2011; Hao and Leung 2013). Allowing agents to ob-
serve the information of other agents outside their direct in-
teractions may result in a faster learning rate and facilitate
coordination on optimal solutions. In the networked social
learning framework, it is thus reasonable to assume that each
agent can have access to its neighbors’ learning experience.
Notice that the amount of learning experience available to
each agent varies and depends on its neighborhood size.

We identify two different learning settings depending
on the amount of information that each agent can per-
ceive. In the first setting, apart from its own action and
payoff, each agent can also observe the actions and pay-
offs of all neighbors with the same role as itself. For-
mally, the information that each agent i can perceive at the
end of each round t can be represented as the set Sti =
{〈sti, ati, rt〉, 〈stb,1, bt1, rt1〉, . . . , 〈stb,N(i), b

t
N(i), r

t
N(i)〉}. Here

〈sti, ati, rt〉 are agent i’s current state, its action and pay-
off, and the rest are the corresponding current states, actions
and payoffs of all its neighbors. This setting is parallel to
the individual action learning setting under the fixed agent
repeated interaction framework (Claus and Boutilier 1998)
and the social learning framework without any underlying
topology (Hao and Leung 2013), and can be considered as a
natural extension to the networked social learning environ-
ment based on the observation mechanism.

The second setting is a natural extension of the joint ac-
tion learning setting in both the fixed agent repeated inter-
action framework (Claus and Boutilier 1998) and the social
learning framework without any underlying topology (Hao
and Leung 2013) to the networked social learning frame-
work. Apart from the same information available in the first
setting, each agent is also assumed to able to perceive the ac-
tion of its interaction partner and those agents with opposite
role from its neighbors’ groups. Formally, the experience for
each agent i at the end of each round t can be denoted as the
set P ti = {〈sti, (ati, atj), rt〉, 〈stb,1, (bt1, ct1), rt1〉, . . . ,
〈stb,N(i), (b

t
N(i), c

t
N(i)), r

t
N(i)〉}. Here 〈sti, (ati, atj), rt〉 con-



sists of the current state sti of agent i, the joint action of
agent i and its partner j, and agent i’s payoff. The rest con-
sists of the current state, the joint actions and payoffs of all
its neighbors’ groups respectively.

3.3 Learning Strategy
In general, to achieve coordination on optimal joint actions,
an agent’s behaviors as the row or column player may be
the same or different, depending on the characteristics of
the game and its opponent’ behavior. Accordingly we pro-
pose that each agent should employ a pair of strategies, one
used when the agent is the row player and the other used
when it is the column player, to play with any other agent
in its neighborhood. The strategies we develop here are nat-
ural extensions of the Q-learning techniques (Watkins and
Dayan 1992) to the networked social learning framework.
There are two distinct ways of applying Q-learning tech-
niques to the networked social learning framework depend-
ing on the learning setting that the agents are situated in as
we described in Section 3.2.

Individual Action Learner In the first setting, each agent
only perceives the actions and payoffs of itself and its neigh-
bors. Thus it is reasonable for each agent to simply con-
sider its interaction partner as part of the environment. Each
agent has two possible states corresponding to its roles as
the row player or column player, and each agent knows its
current role during each interaction. Naturally each agent
holds a Q-value Q(s, a) for each action a under each state
s ∈ {Row,Column}, which keeps record of action a’s past
performance and serves as the basis for making decisions. At
the end of each round t, each agent i picks action a∗ (ran-
domly choosing one action in case of a tie) with the highest
payoff among all its neighbors with the same role as itself
from Sti , and updates this action’s Q-value under its current
state sti using Equation 1,

Qt+1
i (sti, a

∗) = Qt
i(s

t
i, a

∗) + αt
i(s

t
i)× [rtmax(s

t
i, a

∗)

×f t
i (a

∗)−Qt
i(s

t
i, a

∗)]
(1)

where
• rtmax(sti, a∗) = max{r | 〈s′, a∗, r〉 ∈ Sti , s

′ = sti},
which is the highest payoff received by choosing action
a∗ under the same role of sti based on the set Sti ,

• f ti (a∗) =
|{〈s′,a∗,r〉|〈s′,a∗,r〉∈St

i ,s
′=sti,r=r

t
max(s

t
i,a
∗)}|

|{〈s′,a∗,r〉|〈s′,a∗,r〉∈St
i ,s
′=sti}|

,
which is the empirical frequency of receiving the reward
of rtmax(s

t
i, a
∗) by choosing action a∗ based on the cur-

rent round experience,
• αti(sti) is agent i’s current learning rate in state sti.

The above Q-value update rule intuitively incorporates
both the optimistic assumption and the FMQ heuristic
(Kapetanakis and Kudenko 2002). On one hand, this update
rule is optimistic since we only update the Q-value of the
action that receives the highest payoff based on the current
round’s experience, and also its Q-value is updated based
on the highest payoff only. On the other hand, similar to the
FMQ heuristic, the update rule also takes into account the in-
formation of how frequent the corresponding highest payoff
can be received.

Each agent chooses its action based on the set of Q-values
corresponding to its roles during each interaction accord-
ing to the ε-greedy mechanism. Specifically with probabil-
ity 1 − ε each agent chooses its action with the highest Q-
value to exploit the action with best performance currently
(tie is broken randomly), and with probability ε makes ran-
dom choices for the purpose of exploring new actions with
potentially better performance.

Joint Action Learner In the joint action learning setting,
each agent has more information at its disposal since it
can have access to the joint actions of its own group and
its neighbors’ groups. Consequently, each agent can learn
the Q-values for each joint action in contrast to learning
Q-values for individual actions only in the individual ac-
tion learning setting. Specifically, at the end of each round
t, each agent i updates its Q-values under its current state
sti for each joint action −→a which satisfies the constraint of
〈sti,
−→a , r(−→a )〉 ∈ P ti as follows,

Qt+1
i (sti,

−→a ) = Qt
i(s

t
i,
−→a )+αt

i(s
t
i)× [r(−→a )−Qt

i(s
t
i,
−→a )] (2)

where r(−→a ) is the payoff of agent i (or a neighbor if the in-
formation is obtained through obversation mechanism) un-
der state s under the joint action −→a and αti(s

t
i) is its current

learning rate under state sti.
After enough explorations, it is expected that the above

Q-values can reflect the expected performance of each joint
action, but each agent still needs to determine the relative
performance of each individual action to make informed de-
cisions. At the end of each round t, for each action a, de-
fine rmaxa (sti) = max{Qt+1

i (s, (a, b)) | b ∈ Ai}, and de-
note the corresponding opponent’s action as bmax(a). The
value of rmaxa (s) reflects the maximum possible expected
payoff that agent i can obtain by performing action a un-
der the current state sti. However, agent i’s actual expected
payoff of performing action a generally depends on the ac-
tion choices of its interacting partners. To take this factor
into consideration, each agent i also maintains the belief of
the frequency of its interacting partners performing action b
when it chooses action a, which is denoted as fi(sti, 〈a, b〉).
The value of fi(sti, 〈a, b〉) is estimated based on agent i’s
current round experience P ti as follows,

fi(s
t
i, 〈a, b〉) =

|{〈s′, (a, b), r〉 | 〈s′, (a, b), r〉 ∈ P t
i , s
′ = sti}|

|{〈s′, (a, y), r〉 | 〈s′, (a, y), r〉 ∈ P t
i , y ∈ Ai, s′ = sti}|

(3)

Finally, each agent i assesses the relative performance
EV (s, a) of an action a under the current state sti as follows,

EV (sti, a) = rmaxa (sti)× fi(sti, 〈a, bmax(a)〉) (4)

Overall JALs evaluate the relative performance of each
action based on both the optimistic assumption and the in-
formation of the frequency that the maximum payoff can be
received by performing this action. Based on the EV-values
of each individual action, each agent chooses its action in a
similar way as it would use Q-values for IALs following the
ε-greedy mechanism.

4 Experimental Results
In this section, we present the evaluation results of IALs and
JALs in different types of cooperative games and also inves-



(a) CG (b) PG (c) PSCG (d) FSCG

Fig. 1: Different Types of Cooperative Games ((c) (b, b) yields the payoff of 14 or 0 with equal probability (d) Each outcome yields two
different payoffs with equal probability)

tigate the influences of different parameters under the net-
worked social learning framework. Unless otherwise men-
tioned, for the small-word network SW k,ρ

N , the default set-
ting is N = 200, k = 6, ρ = 0.2, and for the scale-free
network SF γN , the default setting is N = 200, γ = 3. For all
agents, the initial learning rate α is 0.9 and the exploration
rate ε is initially set to 0.4. Both values are exponentially de-
creased until 0. The initial Q-values are randomly generated
between -10 and 10. All results are averaged over 200 times.

4.1 Performance Evaluation
Deterministic Games We first consider two represen-
tative and particularly difficult deterministic coordination
problems: the climbing game (CG) (Fig. 1a) and the penalty
game (PG) with k = −50 (Fig. 1b). The climbing game
has one optimal joint action (a, a) and two joint actions
(a, b) and (b, a) with high penalties. The high penalty in-
duced by (a, b) or (b, a) can make the agents find action a
very unattractive, which thus may result in convergence to
the suboptimal outcome (b, b). Fig. 2a and 2b show the av-
erage payoffs of IALs and JALs as functions of the number
of rounds under both small-world and scale-free networks
for the climbing game and penalty game respectively. We
can see that both IALs and JALs can receive the highest av-
erage payoff of 11 (successfully coordinating on the opti-
mal joint action (a, a) ) under both networks. Besides, JALs
learn faster towards optimal outcomes than IALs in both net-
works since JALs have more information at their disposal.

Stochastic Games Next we consider two stochastic vari-
ants of the climbing game - the partially stochastic climbing
game (PSCG) (Fig. 1c) and fully stochastic climbing game
(FSCG) (Fig. 1d). Both games are in essence equivalent to
the original climbing game, since the expected payoff of
each agent under each outcome remains unchanged. How-
ever, it is much more difficult for the agents to converge to
the optimal outcome due to the stochastic feature introduced.
For example, in Fig. 1c the joint action (b, b) yields the pay-
off of 14 with probability of 0.5, which makes it easy for the
agents to misperceive (b, b) as the optimal joint action.

Fig. 2c and 2d illustrate the average payoffs of both IALs
and JALs as functions of the number of rounds in both net-
works for the partially and fully stochastic climbing games
respectively. First we can see that both IALs and JALs can
achieve the highest average payoff of 11 (reach full coor-
dination on (a, a)) for both stochastic games in both net-
works. Another observation is that the JALs do perform sig-
nificantly better than that of IALs in terms of the conver-
gence rate. This is expected since the JALs can distinguish
the Q-values of different joint actions and have the ability
of quickly identifying which action pair is optimal. In con-

trast, for the IALs, since they cannot perceive the actions
of their interacting partners, it is more difficult for them to
distinguish between the noise from the stochasticity of the
game and the explorations of their interacting partners. Thus
it takes more time for the IALs to learn the actual Q-values
of their individual actions.

Summary For both deterministic and stochastic games,
one interesting observation is that both IAL and JALs usu-
ally learn faster in small-world network. We hypothesize that
it is due to the fact that in our setting the average number of
neighbors in the small-world network is more than that in
the scale-free network. According to our observation mech-
anism, each round the agents in small-world network thus
have more experience to learn from and thus can learn faster
towards optimal outcomes. Finally, it is worth mentioning
that for the same game, the learning strategy proposed in
(Hao and Leung 2013) based on individual actions where
the topology is not considered always fails to converge to
the optimal joint action (a, a). This confirms that the net-
work topology has significant influence on the agents’ learn-
ing performance, and our networked social learning frame-
work actually facilitates better coordination among agents
than theirs.

4.2 Influences of Different Parameters
In this section, we turn to investigate the influence of dif-
ferent topology parameters on the learning performance of
agents under the networked social learning framework. Due
to space limitation, we only present the results for IALs and
JALs in penalty game in the small-world network, but the
general conclusions are similar for the scale-free network.

Influences of the size of the population Fig. 2e and 3a
show the dynamics of IALs’ and JALs’ average payoffs with
different population sizes in the small-world network re-
spectively. We can easily observe the trend that the conver-
gence rate is decreased with the increase of the total number
of agents. This is reasonable since both IAL and JAL learn
based on their local information only, and the larger the pop-
ulation size becomes, the more difficult it is for them to co-
ordinate the actions of all agents in the population towards a
consistent optimal solution.

Influences of the neighborhood size Fig. 3b and 3c show
the dynamics of IALs’ and JALs’ average payoffs when the
neighborhood size varies in the small-world network respec-
tively. It is interesting to observe that both IALs and JALs’
learning performance in terms of converging to optimal out-
come is initially increased with the increase of the neighbor-
hood size (2→ 4), but gradually decreased when the neigh-
borhood size is further increased (4→ 6→ 8→ 12→16).
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Fig. 2: Average payoff of IALs and JALs in different games and different networks
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(b) Influence of Neighbor-
hood Size for IALs
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(c) Influence of Neighbor-
hood Size for JALs
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(d) Infuence of Number
of Actions for IALs
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Fig. 3: Influence of different parameters for IALs and JALs in the small-world network

The neighborhood size can be considered as the informa-
tion sharing degree among agents, and too much or less in-
formation seem to both detriment the learning performance
of both learners. We hypothesize that setting the neighbor-
hood size too small or large can either result in the agents
underestimating or overestimating the relative performance
of different actions respectively. One useful insight of this
observation is that in practical distributed systems, agents
may only require few local communication with their neigh-
bors to achieve the globally optimal coordination, given that
the interactions among agents are carefully regulated by the
underlying topology of the system. Another observation is
that the neighborhood size has much more influence on the
learning performance of IALs than that of JALs. This is rea-
sonable because IALs are more susceptible to the noise from
the stochasticity of the game and the explorations of their in-
teracting partners, and a small change of the neighborhood
size can more significantly influence their estimations of the
relative values of each action compared with JALs.

Table 1: General Learning Performance Evaluation

Success
Rate

DCGs in
SWN

SCGs in
SWN

DCGs in
SFN

SCGs in
SFN

IALs 100%
(153
round)

70.67%
(319
round)

100%
(235
round)

68%(455
round)

JALs 100% (41
round)

93,67%(48
round)

100%(43
round)

95%(49
round)

Influences of the number of actions Fig. 3d and 3e show
the dynamics of IALs’ and JALs’ average payoffs when dif-
ferent number of actions varies (from 3 to 6) respectively. As
we can see, the convergence rate is significantly decreased
with the increase of the number of actions. Intuitively the
larger the action space of the learner is, the more suboptimal
(yet misleading) outcomes the games may have. Therefore it
may take more time and experience for the learners to learn
towards a consistent optimal action pair.

4.3 Performance in General Cooperative Games

In this section, we further evaluate the performance of
IALs and JALs in both networks for general deterministic
and stochastic cooperative games (DCGs and SCGs). Both
DCGs and SCGs are generated randomly with the payoffs
ranging between -20 and 20. The success rate and conver-
gence rate (i.e., the average number of rounds before con-
vergence) are listed in Table 1 averaged over 100 randomly
generated games, which show that both IALs and JALs can
achieve full coordination on optimal solutions for all DCGs,
while fail for certain percentage of SCGs. However, JALs
perform much better than IALs in SCGs. Besides, the JALs’
convergence rate towards optimal solutions is much higher
than IALs for both DCGs and SCGs. Intuitively, the supe-
rior performance of JALs can be briefly explained as fol-
lows. In SCGs, JALs can have accurate estimation of the
value of each joint action, while IALs cannot. Accordingly
JALs can successfully distinguish between the environment
noise (stochasticity) and the partners’ explorations in SCGs,
while IALs cannot. Thus it is much easier for IALs to fail in
SCGs than JALs. For JALs, the small percentage of failure
is due to that in some games there exist multiple outcomes
very close to the optimal one, and the inaccurate estimation
of the partners’ behaviors may result in the miscoordination.

5 Conclusion

We are the first to investigate how agents can achieve effi-
cient coordination on optimal outcomes in different coop-
erative environments under the networked social learning
framework by proposing two types of learners: IALs and
JALs. We also show that different network topology factors
can have significant influence on the learning performance
of agents. Compared with previous work, our framework
could be useful in faciliating the coordination among agents
in real-world networked MASs, and provide insights of how
to design cooperative MASs towards efficient coordination.
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