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Abstract

Dynamic coordination for task allocation in disaster
environments under spatial and communicational con-
straints is a challenging issue in both research and ap-
plications. To this end, this paper presents a coordinated
task allocation approach for disaster environments by
considering spatial and communicational constraints,
dynamic features of environments as well as heteroge-
nous capabilities of agents. The proposed approach con-
sists of an information collection mechanism, a group
task allocation mechanism and a group coordination
mechanism. Initially, the information collection mech-
anism is applied to help agents in communication net-
works to prune their communication connections and
elect one agent in each communication network to be
the network leader in a decentralised manner so as
to facilitate the network leader to collect information
for task allocation under communicational constraints.
Then, the group task allocation mechanism is employed
by each network leader to allocate tasks and agents in its
network to groups with suitable spatial ranges by con-
sidering spatial and communicational constraints and
heterogenous capabilities of agents. During task execu-
tion, the group coordination mechanism is employed by
isolated groups to periodically adjust group members
(agents) at assembly points so as to achieve continu-
ous coordination to handle dynamic features of environ-
ments. Experimental results demonstrate that the pro-
posed approach can have better performance than some
existing approaches in terms of information collection
and coordination for task allocation in disaster environ-
ments under spatial and communicational constraints.

1 Introduction
Nowadays, coordination for task allocation techniques have
been widely applied to many domains such as disaster
rescue, space exploration and distributed computing, etc
(Lesser 1999; Allouche and Boukhtouta 2010; Wu et al.
2011). In disaster environments, coordination for task allo-
cation faces several challenging issues especially in the as-
pects of: 1) Spatial constraints. In disaster environments,
stationary tasks can be discovered at different locations if
an agent wants to work on a task, it first needs to move
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to the location of the task (Barbulescu et al. 2010); 2)
Communicational constraints. In disaster environments,
due to the destruction of local communication facilities, the
amount of information transferred among agents (i.e., the
constraint of communication capacities) and the communi-
cation distances of agents (i.e., the constraint of communi-
cation ranges) are limited (Ramchurn et al. 2010a). 3) Dy-
namic features of environments. In disaster environments,
agents can enter and leave the environments and tasks can
be continuously discovered and finished in the environments
(Smith, Gallagher, and Zimmerman 2007; Chapman et al.
2009); 4) Heterogenous capabilities of agents. In disaster
environments, agents are heterogenous and each agent has
its own capabilities, which determine what kind of tasks it
can conduct (Koes, Nourbakhsh, and Sycara 2005). 5) Local
views of agents. Due to the communicational constraints of
disaster environments, each agent can only acquire the in-
formation of tasks nearby its location and the information
of agents with which it can directly communicate (Reich
2006);

Various approaches have been proposed to achieve ef-
ficient task allocation in disaster environments from dif-
ferent perspectives (Musliner and Goldman 2006; Smith,
Gallagher, and Zimmerman 2007). Some approaches deal
with task allocation through a central point (Koes, Nour-
bakhsh, and Sycara 2005; Ramchurn et al. 2010b). In such
approaches, the central controller (i.e., the agent in charge
of task allocation) can create optimal solution for task al-
location based on the global view about the environment.
However, the main limitation for the application of cen-
tralised approaches in disaster environments is that com-
municational constraints make the central controller hard to
timely collect information in the working environment.

In order to overcome the limitation brought by communi-
cational constraints, some approaches enable agents to make
decisions for task allocation by themselves based on their
local views about the environment (Farinelli et al. 2008;
Ramchurn et al. 2010a). In order to enlarge local views
of agents, the max-sum algorithm is employed by decen-
tralised approaches for message passing to enable agents to
exchange information with each other based on the commu-
nication connections. However, in order for agents to collect
comprehensive information to create optimal solutions for
task allocation, agents need to exchange information with



all their direct neighbours, which needs a plenty of time
to pass a large amount of information before task alloca-
tion and cannot suit the constraint of communication capac-
ities as well as dynamic features of disaster environments.
In addition, the prerequisite of employing the max-sum al-
gorithm for message passing is that there must be commu-
nication paths among agents. If two agents are isolated (i.e.,
there is no communication path between two agents), the
max-sum algorithm cannot achieve information exchange
between them under communicational constraints.

In general, current approaches have the following draw-
backs: 1) most centralised approaches cannot achieve timely
information collection for task allocation under communica-
tional constraints; 2) most decentralised approaches are hard
to handle the dynamic features of disaster environments;
3) most of centralised and decentralised approaches cannot
handle all spatial and communicational constraints, dynamic
features of disaster environments as well as heterogenous
capabilities of agents; and 4) most of centralised and decen-
tralised approaches cannot achieve information exchange
between isolated agents under communicational constraints.

To overcome the above drawbacks, this paper presents
a dynamic coordination approach for task allocation in
disaster environments under spatial and communicational
constraints. The proposed approach includes the following
mechanisms: 1) An information collection mechanism is
applied to help agents in communication networks to prune
their communication connections and elect one agent for
each communication network to be the network leader in a
decentralised manner; 2) A group task allocation mecha-
nism is employed by each network leader to allocate tasks
and agents in its network to groups with suitable spatial
ranges; and 3) A group coordination mechanism is em-
ployed by isolated groups to periodically adjust group mem-
bers (agents) at assembly points.

The merits of the proposed approach include that 1) the
proposed approach can reduce the overhead information ex-
change for information collection so as to handle commu-
nicational constraints of disaster environments; 2) the pro-
posed approach can help the network leader to allocate tasks
and agents to groups with suitable spatial ranges so as to
handle spatial and communicational constraints of disaster
environments and heterogenous capabilities of agents; 3) the
proposed approach can achieve continuous coordination of
isolated groups in the environment so as to handle dynamic
features of disaster environments.

The rest of the paper is organized as follows. The problem
is described and definitions are given in Section 2. The basic
principle of the proposed approach is introduced in Section
3. The experiments are given and the results are analyzed in
Section 4. The related work is introduced in Section 5. The
paper is concluded and the future work is outlined in Section
6.

2 Problem Description and Definitions
In general, a task allocation problem includes a set of agents,
which can be described as {A1, A2, ..., Ai, ..., Am}, where
Ai represents an agent in the set. A task can only be discov-
ered by the agents which are close to the location of it. A

task is represented by T(i,j), which means the jth task dis-
covered by Ai. The definitions of an agent and a task are
given as follows.

Definition 1: An Agent (Ai) is defined as a two-tuple
Ai=<Loci, ~Capi>, where Loci is the current location of
Ai; and ~Capi is the capabilities of Ai, which is described
as a vector ~Capi=(c1i , c2i , ..., cRi ), where cri is the indicator
of the rth capability, which indicates whether Ai has the rth
capability, if Ai has the rth capability, cri = 1, otherwise,
cri = 0.

Definition 2: A Task (T(i,j)) represents the jth task
discovered by Ai, which is defined as a two-tuple
T(i,j)=<Loc(i,j), ~RCap(i,j)>, where Loc(i,j) is the loca-
tion of T(i,j); and ~RCap(i,j) is the required capabilities
of T(i,j), which is described as a vector ~RCap(i,j)=(c1(i,j),
c2(i,j), ..., c

R
(i,j)), where cr(i,j) is the indicator of the rth capa-

bility, which indicates whether T(i,j) requires the rth capa-
bility to finish, if T(i,j) requires the rth capability to finish,
cr(i,j) = 1, otherwise, cr(i,j) = 0.

The objective of coordination for task allocation in disas-
ter environments is to maximize the total number of finished
tasks, which can be described as follow.

Objective = max
∑

∀T(i,j)

Finish(T(i,j)), (1)

where Finish(T(i,j)) is a Boolean-return function, if T(i,j)

is finished, Finish(T(i,j))=1.
In the proposed approach, tasks and agents are allocated

to groups, each of which includes a set of tasks and agents
and each task and agent can only belong to only one group.
The definition of the group information of a group is given
as follow.

Definition 3: The Group Information (GInfk) of a group
(Gk) is defined as a five-tuple GInfk=<TSetk, UTSetk,
ASetk, IASetk, Repk>, where TSetk is the set of tasks
of Gk; UTSetk is the set of unfinished tasks of Gk, where
UTSetk ⊆ TSetk; ASetk is the set of agents of Gk;
IASetk is the set of idle agents of Gk, where IASetk ⊆
ASetk; and Repk is the representative agent of Gk, which
is in charge of coordination with other isolated groups.

In the proposed approach, groups periodically coordinate
with each other at assembly points and one round of co-
ordination is finished in TP time units. In the proposed
approach, there are two kinds of coordination, which are
the top-layer coordination and the bottom-layer coordina-
tion carried out at two kinds of assembly points: the assem-
bly point of the environment and the assembly points of the
network, the definitions of which are given as follows.

Definition 4: The assembly point of the environment (APe)
is defined as the only location in a disaster environment,
which is set for the top-layer coordination beforehand and
can be well known by agents in the environment.

Definition 5: An assembly point of the network (APnp) is



defined as a location in a disaster environment, which is
set during emergency for the bottom-layer coordination of
groups from the same communication network.

3 The Basic Principle of the Proposed
Approach

The proposed approach consists of three mechanisms, which
are 1) the information collection mechanism; 2) the group
task allocation mechanism; and 3) the group coordination
mechanism. The basic principle of the proposed approach is
shown in Figure 1.

Figure 1: The basic principle of the proposed approach

At the beginning, the information collection mechanism
can help agents in communication networks to prune their
communication connections and elect a network leader for
each network, which is in charge of information collection
and task allocation in its network. Based on the pruned com-
munication connections, agents can pass the information of
their nearby tasks and the status of themselves to the net-
work leader. After that, according to the group task allo-
cation mechanism, each network leader allocates tasks and
agents in its network to groups with suitable spatial ranges
according to the locations of tasks and capabilities of agents.
The information collection mechanism and the group task
allocation mechanism are performed for just once and net-
work leaders are dismissed after the group task allocation
mechanism. During task execution, due to dynamic features
of environments, the original allocation (by the group task
allocation mechanism) of tasks and agents may be unsuit-
able. Therefore, the group coordination mechanism is pe-
riodically (in every TP time units) employed by groups
to adjust group members (agents) at assembly points so as
to achieve continuous coordination for task allocation until
there is no unfinished task in the environment.

3.1 The Information Collection Mechanism
The objective of the information collection mechanism is to
help agents to prune their communication connections and
elect a network leader to collect information for task alloca-
tion in a decentralised manner, during which agents in the
communication network eliminate all their communication
connections except the one leading to the network leader.
Therefore, after applying the information collection mech-
anism for an m number of agents communication network,
only m − 1 number of connections are kept in the network.
By doing so, each agent only needs to pass the information
it has to the network leader through its only direct neighbour

so as to reduce the overhead information exchange for task
allocation.

In the information collection mechanism, three neighbour
related parameters are defined for each agent, which are the
parent agent (represented by PA), the network leader (rep-
resented by L) and the number of direct neighbours of the
network leader (represented by NNL). For example, for an
agent Ai, three neighbour related parameters can be denoted
as Ai.PA, Ai.L and Ai.NNL, respectively. The informa-
tion collection mechanism is described in Algorithm 1.

Algorithm 1: The information collection mechanism
1 for each agent (e.g., Ai) do
2 Ai.PA← Ai; Ai.L← Ai; Ai.NNL← the

number of direct neighbours of Ai

3 Broadcasts its three neighbour related parameters
4 for each agent (e.g., Ai) do
5 Gets Au from its received parameters, where

Au.NNL is maximum
6 if Au.NNL > Ai.NNL then
7 Ai.PA← Au; Ai.L← Au.L;

Ai.NNL← Au.NNL
8 Broadcasts its new neighbour related parameters

At the beginning of Algorithm 1, three neighbour related
parameters of each agent (e.g., Ai) are initialised as follow:
Ai.PA is set to Ai, Ai.L is set to Ai and Ai.NNL is set to
the number of direct neighbours of Ai (Lines 1 and 2). Then,
agents broadcast their three neighbour related parameters to
its direct neighbours (Line 3). When an agent (e.g., Ai) re-
ceived parameters from its direct neighbours, it repeats the
following two steps. Step 1: Ai finds the agent (e.g., Au)
with the highest value of the parameter NNL (Lines 4 and
5); Step 2: If Au.NNL is higher than the value of Ai.NNL,
three neighbour related parameters of Ai are updated as fol-
low: Ai.PA is set to Au, Ai.L is set to Au.L and Ai.NNL
is set to Au.NNL (Lines 6 and 7) and broadcast its updated
three neighbour related parameters to its direct neighbours
(Line 8); The above two steps (Lines 4 to 8) will be repeated
by each agent until no further updating for three neighbour
related parameters of any agent.

In the final stage of the information collection mechanism,
each connected agent (e.g., Ai) can pass the information of
its nearby tasks and status of itself to its network leader (i.e.,
Ai.L) through its parent agent (i.e., Ai.PA) set in the mech-
anism. In addition, since a task can be discovered by multi-
ple agents, agents need to identify superfluous information
of tasks and abandon that information during information
passing. In addition, if there are isolated agents in an en-
vironment, more than one communication networks exists
in the environment and more than one network leaders are
elected according to the information collection mechanism.

3.2 The Group Task Allocation Mechanism
The group task allocation mechanism helps each network
leader to allocate tasks and agents in its network to groups
with suitable spatial ranges under the consideration of task



allocation and execution. The group task allocation mech-
anism is executed by each network leader, which includes
three steps: 1) task allocation, 2) agent allocation and 3) as-
sembly point of the network setting. After the group task
allocation mechanism, network leaders are dismissed.

Task allocation In task allocation step, tasks of each net-
work are allocated to groups with suitable spatial ranges ac-
cording to locations of tasks (i.e., Loc(i,j), see Definition 2)
and communication ranges of agents (i.e., CR). The objec-
tive of this step is that though restricting the spatial range of
each group, the moving ranges of agents allocated to each
group can be reduced, which can ensure that agents work-
ing in the same group can always communicate with each
other during task execution. By doing so, within each group,
the centralised task allocation approaches can be employed
by agents, such as (Koes, Nourbakhsh, and Sycara 2005;
Ramchurn et al. 2010b).

To achieve above objectives, the mean-shift algorithm
(Comaniciu and Meer 2002) is employed by each network
leader to allocate tasks in its network to groups. The only pa-
rameter of the mean-shift algorithm h represents the radius
of the window, which decides the spatial ranges of groups.
In order to enable agents working in the same group to al-
ways communicate with each other during task execution, h
is set equal to CR. For an n tasks grouping problem in a 2-
dimensional space, the multi-kernel density function can be
calculated as follow.

f(x) =
1

n · CR2

∑
∀T(i,j)∈window

K(
x− Loc(i,j)

CR
), (2)

where K(x) is the kernel function, Loc(i,j) is the location of
T(i,j) within the window, x is the centre (mean) of a window.
In the proposed approach, K(x) can be described by the Eu-
clidean distance between two locations. Based on the multi-
kernel density function, the centre (mean) of the window al-
ways moves to the point with the greatest density value.

Agent allocation In agent allocation step, agents of each
network are allocated to suitable groups according to miss-
ing required capabilities of tasks of each groups (e.g., Gk)
and capabilities of each unallocated agent (e.g., Au). In or-
der to find missing required capabilities of tasks of Gk, we
first find required capabilities of tasks (i.e., T(i,j) ∈ Gk) and
capabilities of allocated agents (i.e., Ai ∈ Gk) of Gk, which
can be calculated as follow.

~RCapk =
∑

T(i,j)∈Gk

~RCap(i,j), ~ACapk =
∑

Ai∈Gk

~Capi,

(3)

where ~RCap(i,j) is the vector of required capabilities of
T(i,j) in Gk; and ~Capi is the vector of capabilities of Ai

in Gk;
Then, the vector of missing required capabilities of tasks

of Gk can be calculated as follow:

~MRCapk = norm( ~RCapk)− norm( ~ACapk) (4)

where norm( ~RCapk) and norm( ~ACapk) are the nor-
malised vector of required capabilities of tasks and the nor-
malised vector of capabilities of allocated agents of Gk, re-
spectively; and mcrk is the indicator of the rth capability,
which describes to what extent Gk requires the rth capabil-
ity, if mcrk≤0, mcrk = 0, otherwise, mcrk = mcrk .

Finally, the similarity value between the vector of miss-
ing required capabilities of tasks of Gk (i.e., ~MRCapk) and
the normalised vector of capabilities of an unallocated agent
Au (i.e., norm( ~Capu)=(nc1u, nc2u, ..., ncRu )) can be calcu-
lated by the dot product of two vectors (Kang and Müller
2011) and Au will be allocated to the group with the highest
similarity value.

Assembly point of the network setting At the final step
of the group task allocation mechanism, the assembly point
of the network (i.e., APnp, see Definition 5) is set for the
coordination of groups from the same communication net-
work. In order for representative agents of the groups to ar-
rive at APnp at the same time, the location of APnp will be
set at the centroid (Altshiller-Court 2007) of centres (means)
of the groups.

3.3 The Group Coordination Mechanism
During task execution, due to dynamic features of environ-
ments, the original allocation (by the group task allocation
mechanism) of tasks and agents in groups may be unsuit-
able, where agents in some groups finish all tasks and are
idle, while agents in some groups are busily working on
unfinished tasks. In addition, it is hard to employ the ex-
isting centralised or decentralised approach to coordinate
these groups, since most of groups are isolated with other
groups under communication constraints. To dynamically
adjust group members (agents) among isolated groups un-
der communicational constraints, during task execution, the
group coordination mechanism is periodically executed by
the representative agent (i.e., Repk, see Definition 3) of each
group. One round of coordination can be finished in TP time
units and includes following steps

1. The representative agent departure: The representative
agent (e.g., Repk) of each group (i.e., Gk) takes the latest
group information (i.e., GInfk, see Definition 3) and be-
gins to move to the assembly point of the network (APnp,
see Definition 5).

2. The representative agent wait: Since different representa-
tive agents might have different moving speed or differ-
ent distances to APnp, if Repk arrives at APnp earlier,
it needs to wait for the representative agents that do not
arrive until the TP

2 time units.
3. The representative agent coordination: The representative

agents at APnp begins to coordinate with each other and
updates their GInfk accordingly. The detailed process of
coordination will be introduced in Subsection 3.3.



4. The representative agent return: Repk returns to Gk and
adjusts the work of its group members according to the
updated GInfk.

The two-layer coordination The group coordination
mechanism has a two-layer structure: the top-layer coordi-
nation and the bottom-layer coordination. Bottom-layer co-
ordination: the representative agents (i.e., Repk, see Defi-
nition 3) of groups from the same communication network
first coordinate with each other at the assembly point of the
network (i.e., APnp, see Definition 5); Top-layer coordi-
nation: after coordination at APnp, if one Repk at each
APnp collects all group information (i.e., GInfk, see Def-
inition 3), moves to the assembly point of the environment
(i.e., APe, see Definition 4) and coordinates with represen-
tative agents from other assembly points of the network.

An example of the two-layer group coordination mecha-
nism is shown as Figure 2

Figure 2: The two-layer group coordination mechanism

In Figure 2, black squares and white circles represent
tasks and agents in an environment, respectively. APe is the
assembly point of the environment (see Definition 4). There
are five groups (i.e., G1 to G5) in the environment, where
G1, G2, and G3 are from the same communication network
and their assembly point of the network is APn1 (see Defi-
nition 5); G4 and G5 are from the same communication net-
work and their assembly point of the network is APn2 (see
Definition 5). At beginning, representative agents (i.e., Rep1
to Rep3) of G1 to G3 move to APn1 and coordinate with
each other there. At the same time representative agents (i.e.,
Rep4 and Rep5) of G4 to G5 move to APn2 and coordinate
with each other there (i.e., bottom-layer coordination). After
that, if there are still unfinished tasks or idle agents in G1 to
G3 and G4 to G5, one representative agent in each assembly
point of the network (e.g., Rep1 from APn1 and Rep4 from
APn2) move to APe and coordinate with each other (i.e.,
top-layer coordination).

Adjustment at an assembly point The adjustment of
group members (agents) is to allocate suitable idle agents
in some groups to unfinished tasks in other groups. The suit-
ability of an idle agent (e.g., Ai) allocated to an unfinished
task (e.g., T(i,j)) can be evaluated by the similarity value
between the vector of the required capabilities of the unfin-
ished task (i.e., ~RCap(i,j), see Definition 2) and the vector
of the capabilities of the idle agent (i.e., ~Capi, see Defini-
tion 1), which can be calculated by the dot product of two

vectors. At the assembly point, many task allocation mech-
anisms can be employed by agents to adjust group members
(agents). One of simply and quick ways is the Contract-Net
Protocol (Smith 1980), which is described in Algorithm 2.

Algorithm 2: Adjustment at an assembly point
1 for each Repk whose UTSetk 6= ∅ do
2 Broadcasts each T(i,j) ∈ UTSetk
3 for each Repu whose IASetu 6= ∅ do
4 for each received T(i,j) do
5 for each Ai ∈ IASetu do
6 Calculates Sim((i,j),i) between ~RCap(i,j)

of T(i,j) and ~Capi of Ai

7 Records Ai with Max(Sim((i,j),i)) in RResu
8 Sends RResu to Repk.
9 for each Repk whose UTSetk 6= ∅ do

10 for each T(i,j) ∈ UTSetk do
11 finds suitable Ai in RResu and informs Repu
12 Repk and Repu updates GInfk and GInfu,

respectively.

At the initial stage, the representative agent (e.g., Repk)
of each group (e.g., Gk) with unfinished tasks (i.e.,
UTSetk 6= ∅, see Definition 3) broadcasts its unfinished
tasks (i.e., ∀T(i,j) ∈ UTSetk) to other representative agents
at the assembly point (Lines 1 and 2). When a representa-
tive agent (e.g., Repu) of a group (e.g., Gu) receives unfin-
ished tasks (e.g., T(i,j) ∈ UTSetk) and Gu has idle agents
(i.e., Ai ∈ IASetu), Repu calculates the similarity value
(i.e., Sim((i,j),i)) between the required capabilities of the
received T(i,j) and the capabilities of idle Ai (Lines 3 to 6).
For each T(i,j) records Ai with the highest Sim((i,j),i) in re-
source response RResu, which is sent back to Repk (Lines
7 to 8). After receiving all resource responses, Repk chooses
suitable Ai for each T(i,j) and informs the owner (i.e., Repu)
of each Ai (Lines 9 to 11). Repk and Repu update Glnfk
and GInfu, respectively (Line 12).

4 Empirical Experiments and Analysis
The purpose of this experiment is to evaluate the perfor-
mance of the proposed approach on task allocation in disas-
ter environments. In this experiment, the proposed approach
is compared with the MILP based approach (Koes, Nour-
bakhsh, and Sycara 2005) and max-sum based approach
(Ramchurn et al. 2010a).

4.1 Experimental Settings
In this experiment, 100 tasks (40 tasks are discovered at the
beginning of the experiment and 60 are discovered during
task execution) and 15 agents are employed in a 50 × 50
(square units of distance) area. Each agent can only fin-
ish move 1 ∼ 5 units of distance per time unit. There
are four kinds of capabilities required by tasks. Each task
requires one or two kinds of capabilities and each agent
has two random kinds of capabilities. The MILP based ap-
proach (represented by ‘MILP’) is a centralised task allo-



Figure 3: The experimental results of experiment

cation approach without considering communicational con-
straints. Therefore, in the experiment, we assume that there
is no communicational constraints for ‘MILP’. For the max-
sum based approach (represented by ‘MS’) and the pro-
posed approach (represented by ‘TASC’), the communica-
tion ranges of agents (i.e., CR) are fixed to 20 units of dis-
tance. In ‘TASC’, one agent in each group is chosen to be
the representative agent, which periodically (every 25 time
units) and moves to assembly points to coordinate with rep-
resentative agents of other groups.

4.2 Experimental Results and Analysis
The experimental results for the experiment are shown in
Figure 3. The X-axis of Figure 3 are the consumed time
units. The Y-axis of Figure 3 are the total number of fin-
ished tasks. From Figure 3, it can be seen that without com-
municational constraints, ‘MILP’ has the best performance
on task allocation. That is because ‘MILP’ can always create
the optimal solution for task allocation based on the global
knowledge about the environment, which can be taken as the
benchmark in this experiment. With communicational con-
straints, the performance of task allocation of ‘MS’ is bet-
ter than that of ‘TASC’ at the beginning of the experiment.
That is because all agents in ‘MS’ participate in task execu-
tion, while representative agents of the proposed approach
are only in charge of coordination with other groups. How-
ever, after one round of coordination, ‘TASC’ can quickly
adjust group members (agents) among isolated groups and
the group coordination mechanism can achieve continuous
coordination in ‘TASC’, which keep the performance of
‘TASC’ better than that of ‘MS’ in the following task alloca-
tion. Without a coordination mechanism, communicational
constraints and dynamic features of the environment limits
the performance of ‘MS’ in long-term task allocation in the
experiment.

5 Related Work
Some approaches handle the coordination for the task allo-
cation problem in a centralised manner, such as the MILP
based approaches (Ramchurn et al. 2010b; Koes, Nour-
bakhsh, and Sycara 2005). The centralised approaches can
guarantee an optimal solution for task allocation if the cen-
tral controller has the global view of the environment. How-

ever, due to communicational constraints, it is hard for the
central controller to have such view of the environments.
According to the proposed approach, tasks and agents of
communication network are divided into groups with suit-
able space ranges, within which agents can always commu-
nicate with each other so that the centralised task allocation
approach can be employed by agents of each group for task
allocation.

Some approaches handle the coordination for the task
allocation problem in a decentralised manner, such as the
max-sum algorithm based approaches (Farinelli et al. 2008;
Ramchurn et al. 2010a). These decentralised approaches en-
able agents to make decisions for task allocation based on
information exchange of the max-sum algorithm. However,
in order to collect comprehensive information for task allo-
cation, each agent needs to exchange information with its
direct neighbours, which needs a plenty of time to achieve
and cannot suit dynamic features of the environments. In our
information collection mechanism, a connected agent (e.g.
Ai) only needs to pass information for task allocation to
its network leader (i.e., Ai.L) through its parent agent (i.e.,
Ai.PA), which saves much time and resource for informa-
tion exchange for task allocation.

In recent years, the DARPA coordinators program has
been a popular simulation environment for task alloca-
tion approaches (Smith, Gallagher, and Zimmerman 2007;
Barbulescu et al. 2010). The main difference between the
environments of the DARPA coordinators program and the
proposed approach is that the environment of the DARPA
coordinators program does not take either spatial or commu-
nicational constraints into account, while the proposed ap-
proach deals with coordination for task allocation problem
in disaster environments by considering spatial and commu-
nicational constraints, dynamic features of the environments
as well as heterogenous capabilities of agents.

6 Conclusion and Future Work
In this paper, an innovative dynamic coordination approach
for task allocation in disaster environments under space and
communicational constraints is proposed. The proposed ap-
proach first prunes communication networks and collects
information for task allocation in a decentralised manner
according to the information collection mechanism. Then,
tasks and agents of each communication network are divided
into groups with suitable spatial ranges according to the
group task allocation mechanism. In order to adjust group
members (agents) among isolated groups during task execu-
tion, groups periodically coordinate with each other at as-
sembly points so as to achieve continuous and dynamic co-
ordination for task allocation by the use of the group coordi-
nation mechanism. In the future, we would like to adjust the
proposed approach to handle task allocation in competitive
environments, such as market-based environments, such as
(Chapman et al. 2009).
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