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Abstract

We explore the emergent behavior of game theoretic algo-
rithms in a highly dynamic applied setting in which the opti-
mal goal for the agents is constantly changing. Our focus is
on a variant of the traditional predator-prey problem entitled
Defender. Consisting of multiple predators and multiple prey,
Defender shares similarities with rugby, soccer, and football,
in addition to current problems in the field of Multiagent Sys-
tems (MAS). Observations, communications, and knowledge
about the world-state are designed to be information-sparse,
modeling real-world uncertainty. We propose a solution to
Defender by means of the well-known multiagent learning
algorithm fictitious play, and compare it with rational learn-
ing, regret matching, minimax regret, and a simple greedy
strategy. We provide the modifications required to build these
agents and state the implications of their application of them
to our problem. We show fictitious play’s performance to be
superior at evenly assigning predators to prey in spite of it
being an incomplete and imperfect information game that is
continually changing its dimension and payoff. Interestingly,
its performance is attributed to a synthesis of fictitious play,
partial observability, and an anti-coordination game which re-
inforces the payoff of actions that were previously taken.

Introduction
Multiagent Systems (MAS) research has recently began to
focus on the adaptability of agents from dynamism and the
managing of uncertainty as they work in groups to meet their
design objectives. Ad hoc teams (Stone et al. 2010; Barrett,
Stone, and Kraus 2011), robotic incarnations of MAS (Ki-
tano et al. 1997; Stone 2000; Vidal et al. 2002), and math-
ematical models including partial observability (e.g., Dec-
POMDPs) (Bernstein, Zilberstein, and Immerman 2002;
Goldman and Zilberstein 2004; Nair and Tambe 2005) all
describe aspects of dynamic scenarios. Most solutions can
overcome high degrees of uncertainty by relying on strong
but understandably problem-specific solutions (Undeger and
Polat 2010; Vidal et al. 2002; Stone 2000) or robust auction
approaches (Smith 1980; Parker 1998). These methods do
not usually use traditional game theory in their construction
since the mathematical model does not incorporate all realis-
tic aspects of uncertainty. Conversely, solutions under game
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theory are often evaluated in well-defined problems (Jafari
et al. 2001) or only incorporate some dynamism (Boutilier
1996). This paper investigates this relatively unexplored in-
tersection of traditional game theory and highly dynamic
MAS scenarios. Specifically, we examine the direct applica-
tion of game theory to an information-sparse predator-prey
problem entitled Defender.

Anti-coordination games only award agents for selecting
an action different than any other player. We leverage this
property to evenly distribute predators (agents) to prey (ac-
tions). Casting the problem with this game theoretic struc-
ture enables us to directly employ adaptive learning al-
gorithms such as fictitious play and regret matching. The
problem domain, which adjusts payoffs over time and has
both incomplete and imperfect information, complicates this
learning process. Agents do not observe all other predators
(agents) or even prey (actions). This dynamically shifts as
they move in the environment, causing the internal game’s
payoffs and dimension to change. Moreover, agents must
successfully interact without any prior coordination or direct
communication; they do not even know how many predators
or prey there are in the environment.

This paper empirically investigates the effects of this dy-
namism on the aforementioned game theoretic learning al-
gorithms in an applied setting. Our contributions include
empirical evidence that suggests the direct application game
theoretic learning can be successfully applied even with a
changing game. We also provide the Defender problem it-
self, an extension of predator-prey, as a framework for the
development of multiagent learning algorithms in dynamic
scenarios. Furthermore, we show that emergent commitment
and adaptability behavior arises with a combination of anti-
coordination games and these well-known learning algo-
rithms.

The next section introduces the formal definition of De-
fender and our rationale behind its construction. We then
state the design of our agents. With the model in place we
present and interpret our results from experimentation.

The Defender Problem
The predator-prey problem, originally proposed by Benda et
al. (1986), has become a standard proving ground for MAS
research over the years since its inception. We propose a
multi-predator multi-prey version of the original problem



Figure 1: A visual example to compare Defender (left) to
the traditional predator-prey problem (right). Blue shapes
denote predators and red shapes denote prey.

that situates predators and prey on opposite sides of a re-
gion (see Figure 1). The goal of the predators is to success-
fully capture the prey before one of the prey reaches their
haven behind the predators. The construction of Defender
was inspired by the aforementioned problems in the state-of-
the-art and other variants (Hespanha, Kim, and Sastry 1999;
Arslan, Marden, and Shamma 2007; Stone et al. 2010;
Barrett, Stone, and Kraus 2011; Chung, Hollinger, and Isler
2011; Keshmiri and Payandeh 2013). Durfee et al.’s (1989)
work influenced Defender’s design. They proposed a dis-
crete multi-predator multi-prey problem with limited field-
of-view and update rate, which differs from our continuous
version which requires a unique assignment of predators to
prey. Defender’s design incorporates the uncertainty found
in realistic applications in which agents must rapidly con-
verge to a solution while still retaining the ability to adapt to
an ever-changing environment.

Defender was also inspired by a predator-prey variant
that incorporates the kind of dynamism found in realistic
incarnations of MAS (Parker and Emmons 1997; Tomlin,
Lygeros, and Sastry 2000). Additionally, we took inspira-
tion work which investigated a predator(s) trying to cap-
ture prey in worlds with obstacles (Undeger and Polat 2010;
Gerkey, Thrun, and Gordon 2006). Lastly, we built upon
similar research on multiagent assignment problems which
used game theory (Arslan, Marden, and Shamma 2007).

Defender consists of a set of predatorsN , and a set of prey
M . These agents interact in an environment which operates
under an agent position update rule. Each of these compo-
nents is described in the following subsections.

Agents
All agents i ∈ N ∪M in Defender have a state described by
the tuple (~pi, ~vi, ~ai, θi, Ωi, Li). There are three vectors that
define the position, velocity and acceleration of the agent:
~pi, ~vi, and ~ai, respectively. The orientation of the agent is
defined by the scalar variable θi ∈ [0, 2π). Any observa-
tions made by the agent over all stages are given in the list
Ωi. We will denote Ωij to be the list of observations that
agent i made over all stages of agent j ∈ N ∪ M \ {i},
which the tracker internally manages within each predator.

Ωij will only contain the positions, velocities, and orienta-
tions of agent j at each stage. We denote a particular obser-
vation at a stage to be ωij , e.g., Ωij = {ω1

ij , . . . , ω
t
ij}. Li

refers to the particular learning algorithm used by agent i. A
predator i ∈ N follows fictitious play, rational learning, re-
gret matching, minimax regret, or a simple greedy strategy.
A prey i ∈ M has either a simple or maneuvering strategy.
Lastly, we will use ~vi,des and θi,des as the variables the agent
may control to adjust its state in the world.

Environmental Parameters
The environment is defined by the tuple (s∗, c∗, t∗, φ∗,
(δp, δv, δφ), (pmiss, perr), (avmax, atmax, aupdate)). The
area in which our agents reside is a two-dimensional, contin-
uous world of size s∗ by s∗. Each agent team begins opposite
the other on their “goal” side; each goal is of size s∗ by 1

15s
∗.

First, let U(a, b) denote a uniform distribution on [a, b]. For-
mally, for all predators i ∈ N , ~pi = [U(0, s∗),U(0, 1

15s
∗)]T

and θi = U(−φ∗, φ∗), with φ∗ denoting the field-of-view.
For all prey j ∈ M , ~pj = [U(0, s∗),U( 14

15s
∗, s∗)]T and

θj = U(−φ∗, φ∗). Agents enter play after being inactive
for U(0, t∗) seconds.

For predator i ∈ N to capture a prey j ∈M , the predator
must be within c∗ units of the prey, i.e., ‖~pi − ~pj‖2 < c∗.
Upon capture, the predator and prey pair are halted and re-
moved from the game. A predator may only capture one
prey. All agents are limited to a field-of-view φ∗, which may
be described for any agent i ∈ N ∪M by the orientation
interval (θi − φ∗

2 , θi + φ∗

2 ).
Observations made by agents are subject to sensor noise,

which we model using a normal distribution denoted as N .
Given i, j ∈ N ∪ M , i 6= j, if agent i observes j, with
its position being inside i’s field-of-view, the new observa-
tion i makes of j, ωij = (~pij , ~vij , θij), is subject to noise
such that i observes ~pij = ~pj + [N (0, δp),N (0, δp)]

T ,
~vij = ~vj + [N (0, δv),N (0, δv)]

T , and θij = θj +N (0, δφ).
We use pmiss and perr as the probability that any agent com-
pletely misses an observation, and the probability that the
observation is erroneous, respectively. The variables avmax
and atmax define the maximal agent movement speed and
turn speed, respectively. Agents only update their decisions
via their learning rule Li after every aupdate seconds, re-
stricting the agent update rate to emulate the realistic com-
putational limitations of robotic MAS.

Agents have limitations on their capability to store in-
formation such that they do not preserve any information
over repeated trials of Defender. Also, agents are only able
to infer the actions that others take; no mechanism exists
which lets them to directly communicate their selected ac-
tions. Agents are not provided with any initial knowledge
about any trial a priori. This means that the number of agents
in the system is not known. For observed agents, the learning
algorithms (including payoffs) of others is also unknown.

The State Transition
The movement of the agents follows the dynamics found in
robotic applications. With this in mind, we define a friction
constant F and an acceleration rate for agents R. For our



purposes, we set F = 0.96 and R = 0.75 since we found it
provided a good balance of movement uncertainty while still
retaining realistic behavior. Any agent i ∈ N ∪M adjusts
its desired velocity ~vi,des and desired orientation θi,des only
during their update stage. The state update for an agent i ∈
N ∪M is as follows.

~vi ← ~vi + ~ai

~pi ← ~pi + ~vi + ~a2
i /2

~vi ← F · ~vi

θi ← θi + max(−θ∗/2,min(θ∗/2, θi,des − θi))

~ai ← ~ai + sign(‖~vi,des‖ − ‖~vi‖) · R · [cos θi, sin θi]
T

In our simulation environment, we also use the state tran-
sition to check for the various conditions embedded in the
problem. These include the checks for if a predator captured
a prey and the game ending conditions: a prey reached its
haven behind the predators or all prey were successfully cap-
tured by the predators.

A Game Theoretic Approach
We will use game theoretic learning algorithms that adapt
based on the actions of others and/or the payoffs obtained
at each stage. The three learning algorithms that we evalu-
ate are fictitious play, rational learning, and regret matching.
These were selected because of their convergence in tradi-
tional game theory, inherent adaptability, optimizable struc-
ture in anti-coordination games, and the important property
that they do not require knowledge of other agents’ payoffs.
We use minimax regret and a simple greedy strategy as a
baseline comparison; both of these also do not require the
knowledge of others’ payoffs. There have been few appli-
cations of these algorithms to solve problems that are not
perfectly known and remain static over iteration. This is to
be expected, since they are constructed to converge only
in these controlled domains. Knowing this fact, we explore
their usefulness in an applied setting, which does not satisfy
the assumed structure of the formal model.

In addition to the learning algorithms, we use an anti-
coordination game. Informally, players in these games are
only rewarded a positive payoff if they successfully select a
different action from another player, and a zero payoff other-
wise. Our predators and prey will be the players and actions
in this game, respectively. Our payoff function will be pro-
portional to the expected distance a predator must travel to
capture a prey, given both agents’ trajectories. We will show
that this game structure, in combination with our learning al-
gorithms, creates an emergent behavior for predators to dis-
tribute themselves to prey.

This section details our predator design and overall
methodology. We use the standard game theoretic definitions
and learning algorithms (Shoham and Leyton-Brown 2009).

Game Definition
As mentioned above, we will use an anti-coordination game
with payoffs proportional to expected travel distance. We be-
gin our discussion by setting notation in Defender’s “normal
form” (Definition 1).

Figure 2: A simplified example of two predators and two
prey. The set of predators is N = {A,B} and the set of prey
is M = {1, 2}, shown in blue and red, respectively. The
observations for predator A are ΩA = {ωA1, ωA2} and for
predator B are ΩB = {ωBA, ωB1, ωB2}. The path numbers
denote the expected travel distance.

Definition 1. Defender’s normal form (at any stage t) is a
tuple (N,A,U):

• N is the set of n predators.
• A = (A1, . . . , An) with each Ai = {a1, . . . , ami

}, mi ≤
n, being a set of prey (actions) available to predator i as
defined by observations within i’s field-of-view.

• U = (u1, . . . , un) is a set of utility functions; defined for
a predator i, ui(ai, a−i) is the utility for an action profile
a = (ai, a−i) ∈ A.

Equation 1 below defines our payoff function. The payoff
value is computed using equation 2.

ui(a) =

{
ui(ai), if ∀1 ≤ j ≤ n, j 6= i, ai 6= aj
0, otherwise (1)

ui(ai) = max(0,min(pmax, pmax − d · γ)) (2)
γ = max(0.7,min(1.0, 0.85 + 0.05 · (β − α)))

The variables used in equation 2 are detailed below.
• pmax is a constant used to ensure the payoff is positive. It

is defined as the maximal distance the agent may travel.
• d is an expected travel distance estimate for the predator to

capture the prey. It is computed using an iterative solver
based on the known capabilities of the predator and the
observed trajectory of the prey.

• β is the number of observed predators who have shorter
distance estimates. This performs the same estimated
travel distance function as above except that it is centered
at the observed predators.

• α is the number of additional potential prey that might ex-
ist if a miss occurs, which again uses the estimated travel
distance function to count the number of visible prey after
reaching the estimated path intersection point.
General anti-coordination games ensure that a set of

agents selecting the same action awards a zero payoff to
all within the set. Ideally, all components of the game are



Figure 3: Predator visual control flow diagram.

known; however, predators do not know of other agents out-
side their field-of-view. Therefore, the “global view” of the
anti-coordination game being played by all agents at any
given stage is not truly an anti-coordination game. A sim-
ple example of this is depicted in Figure 2. Predator A can
see prey 1 and 2, but is unable to see predator B. Predator B
can see prey 1, prey 2, and predator A. By default, since no
other predators are observed from predator A’s perspective,
it will select the action that yields the highest utility: prey
1. If predator A continues to select prey 1, then our learning
algorithms will hopefully cause predator B to select prey 2,
since prey 1 would provide a zero payoff to predator B. This
means our agent’s limited field-of-view and their tracker ca-
pabilities play an important role in determining the game’s
stability (in the sense of its dimension and payoff consis-
tency over stages). There are other issues, e.g., the game’s
payoffs changing over time, and the actual dimension of
the game (number of players and actions) changes as agents
move around the area. This will be discussed in detail later.

Learning Algorithms
Agents update their decisions asynchronously, i.e., agents
update in a continuous time, not together in discrete stages.
At each update, they first make observations of the environ-
ment, then update their tracker accordingly. With this new
information, they compute their next action following their
learning algorithm, which may update its internal variables
given this new information as well. For a visual explanation
of the agents’ run-time operation, see the visual flow dia-
gram depicted in Figure 3. If predators do not observe other
predators, it follows the greedy strategy by default below.

Fictitious play was originally proposed by Brown (1951)
and Robinson (1951) as a means to compute Nash equilibria.
Many notable variants exist to improve convergence proper-
ties such as smooth fictitious play by Fudenberg et al. (1999).
The underlying assumption is that others are performing a
stationary mixed strategy. The empirical frequencies over
observations determine the probability distributions over ac-
tions for each other player. As others have done, we define
it with an expected utility equation (Arslan, Marden, and
Shamma 2007). We use the action-based version because it

provides the desired emergent commitment behavior, which
will be discussed later (Equation 3).

Li = arg max
ai∈Ai

∑
a−i∈A−i

ui(ai, a−i)
∏

aj∈a−i

pi(aj) (3)

pi(aj) =
1

|Ωij |
∑
ω∈Ωij

I{ω = aj}

Rational learning follows the expected utility representa-
tion of fictitious play; however, it instead defines the prob-
ability distribution of other players’ actions using Bayesian
inference (Equation 4). While any prior and likelihood dis-
tributions are valid, we will update using the Dirichlet dis-
tribution’s expected value, similar to Boutilier’s implemen-
tation (1996), with an initial prior distribution equivalent to
the discrete uniform.

Li = arg max
ai∈Ai

∑
a−i∈A−i

ui(ai, a−i)
∏

aj∈a−i

pi(aj) (4)

pi(aj) =
p(Ωij |aj)p(aj)∑

ak∈a−i
p(Ωik|ak)p(ak)

Regret matching and other regret-based methods have be-
come popular in the multiagent learning community due
its logical rationale and powerful convergence properties
(Equation 5). In summary, the algorithm guarantees the pro-
portion of times each player selects an action to converge
to a correlated equilibrium. The regret that player i ∈ N
receives for an action ai ∈ Ai is defined as the average
payoff i could have received if it had just played ai at all
stages minus the average payoff i has received. It selects the
action randomly following the distribution, denoted by the
“∼” symbol for brevity. Below, we also denote a∗(t)i to be
the action performed by i at stage t.

Li ∼
max{ri(ai)− ri, 0}∑

a′∈Ai
max{ri(a′)− ri, 0}

, ∀ai ∈ Ai (5)

ri(a
′) =

1

|Ωij |

|Ωij |∑
t=1

u
(t)
i (a′), ri =

1

|Ωij |

|Ωij |∑
t=1

u
(t)
i (a

∗(t)
i )

Minimax regret uses regret only on a single stage to select
the action that minimizes the maximum regret. We selected
this as one of our baselines because it, like all the other
algorithms here, does not require the knowledge of other
agents’ payoffs. Furthermore, it uses the traditional minimax
logic, it was constructed from the field of game theory, and
it shows the behavior of a stage-based algorithm that does
not incorporate observation history (Equation 6).

Li = arg min
ai∈Ai

max
a−i∈A−i

(
max
a′i∈Ai

ui(a
′
i, a−i)− ui(ai, a−i)

)
(6)

Greedy algorithms are used throughout the literature to
provide a simple baseline. Ours simply selects the observ-
able prey with the highest utility (Equation 7).

Li = arg max
ai∈Ai

ui(ai) (7)



The Tracker
Robotic MAS often must employ the use of a tracker which
enables robotic agents to keep track of other agents in the
area. We use a standard score and threshold gating mecha-
nism. Our score is proportional to the difference from the
prediction and the new observation state (x, y, θ, and s). We
employ an Extended Kalman Filter (EKF) over the observa-
tion state space to reduce noise (Welch and Bishop 2006).

Experimentation
Our experimentation focuses on n = m scenarios, i.e., the
same number of predators and prey. We experimented with
heterogeneous team sizes and found that the homogeneous
cases produced the experimentally interesting results. It is
clear why this is the case; if the predators outnumber the
prey, it is easier for the predators to completely capture all
the prey. Conversely, if the prey outnumber the predators,
there is no possible way to capture all the prey in the system
since a predator may only capture one prey. Evenly matched
teams, like in sports, provide the most distinctive results.
Combined with strict space constraints, we have omitted this
subset of the experiments in favor of highlighting the most
demonstrative experiments to compare the algorithms.

Instead, we examine different team sizes, varying the
number of predators and prey from 1 to 8. We experiment
with all permutations of the five predator learning algorithms
against two kinds of prey: simple and maneuvering. This
provides 80 points of comparison. Note that we were un-
able to run minimax regret agents beyond team sizes of 4
due to computational issues. We ran each of the 80 configu-
rations for 5000 trials using a 3.2 GHz Intel(R) Pentium(R)
4 CPU with 1 GB of RAM under OpenSuse Linux 11.4. The
simulation itself was written in C++ using OpenGL.

Simple prey sprint toward their haven given their initial
orientation. This provides a straight forward baseline. In
practice, it is actually quite difficult to coordinate the preda-
tors even in this simple case. Maneuvering prey are initial-
ized with a random wavelength λ on the interval U(4, 9) and
a periodicity γ on the interval U(tan( π12 )λ, tan( 5π

12 )λ), i.e.,
15 to 75 degree arcs that are 4 to 9 units long.

For all of our experiments, we used the environmental pa-
rameters E = (s∗, c∗, t∗, φ∗, (δloc, δvel, δφ), (pmiss, perr),
(avmax, atmax, aupdate)) = ( 100 units, 3.3 units, 10 sec-
onds, π3 , (1 unit, 3 units, 0.01 units), (5%, 5%), (0.3 units,
0.75 units, 1

2 second) ). This configuration provides robotic-
like movement, e.g., UAVs or four-wheeled robots, and em-
ulates realistic sensing limitations (see Figure 4).

Discussion
In spite of the high degree of uncertainty in Defender, we
found fictitious play and rational learning produced an emer-
gent distributive and commitment behavior. The percent-
age of prey captured for all three learning algorithms were
high, ranging between 98% and 80% over team sizes from
1 to 8. While maneuvering prey consistently reduced the
capture percentage of all algorithms by about 2% to 3%,
they have proportionally similar prey captured percentages.

Figure 4: An example of fictitious play predators chasing
maneuvering prey (n = m = 8). The numbers denote the
sequence over time.

The disparity in the complete capture percentages, how-
ever, suggests that fictitious play produces much more co-
operative behavior than the others. In the case with team
sizes of eight, fictitious play reached 39.64% as compared
to 27.42%, 12.94%, and 11.00% for rational learning, regret
matching, and the greedy strategy, respectively. All averages
show a definitively small 95% confidence interval, demon-
strating that the averages are statistically distinct.

Regret matching surprisingly did not perform that well in
practice. The main problem is that the agents’ strategy pro-
files are not proven to converge, like they do in fictitious
play or rational learning. Instead, it is the empirical aver-
age of action selections that converges to a correlated equi-
librium. In this application, the predators’ tended to switch
back and forth between prey. Our regret-based agents lacked
commitment which, as noted by Jennings (Jennings 1993),
is one of the most important aspects of cooperating MAS.
This has been observed by other researchers before (Jafari
et al. 2001), and should be taken into consideration when
designing agents that must solve their problem in situ.

The learning predators performed quite well compared to
the baselines, reaching 80% to 90% in the case of team sizes
set to eight using simple prey. Minimax regret had compu-
tation issues, suffered from the aforementioned regret-based
issues, and was not designed to incorporate any history into
its decision-making process, thus it performed poorly at
47.28% in the much simpler case with a team size of four.
Our greedy algorithm performed adequately because it pos-



Simple
1 2 3 4 5 6 7 8

Fictitious Play 97.0± 0.5 95.8± 0.4 94.0± 0.4 92.3± 0.4 92.0± 0.3 90.7± 0.3 90.3± 0.3 90.2± 0.3
Rational Learning 98.1± 0.4 93.8± 0.5 91.3± 0.4 89.2± 0.4 88.6± 0.4 88.1± 0.3 87.8± 0.3 87.6± 0.3
Regret Matching 98.2± 0.4 93.3± 0.5 88.6± 0.5 85.1± 0.5 83.0± 0.4 81.8± 0.4 80.6± 0.4 80.1± 0.3
Minimax Regret 97.6± 0.4 57.9± 1.0 50.4± 0.8 47.3± 0.7 n/a n/a n/a n/a

Greedy 97.2± 0.5 87.8± 0.6 83.3± 0.5 82.6± 0.4 81.3± 0.4 81.2± 0.3 81.1± 0.3 81.3± 0.3
Maneuvering

Fictitious Play 97.0± 0.5 93.6± 0.5 92.2± 0.4 90.2± 0.4 88.9± 0.4 88.4± 0.3 87.7± 0.3 87.4± 0.3
Rational Learning 96.0± 0.5 91.8± 0.5 88.6± 0.5 87.0± 0.4 85.9± 0.4 85.3± 0.4 85.3± 0.3 85.1± 0.3
Regret Matching 97.7± 0.4 90.8± 0.6 85.8± 0.5 82.7± 0.5 80.1± 0.5 78.8± 0.4 78.1± 0.4 77.3± 0.4
Minimax Regret 95.3± 0.6 66.1± 0.9 56.4± 0.8 52.8± 0.7 n/a n/a n/a n/a

Greedy 95.1± 0.6 87.5± 0.6 82.9± 0.5 80.9± 0.4 81.1± 0.4 80.6± 0.4 80.4± 0.3 80.5± 0.3

Table 1: Average percentage of prey captured (%) for each configuration of predators and prey with even teams sizes of 1 to 8
agent. The adjustment from the mean, defining a 95% confidence interval, is also provided. Each cell summarizes 5000 trials.

Simple
1 2 3 4 5 6 7 8

Fictitious Play 97.0± 0.5 97.7± 0.8 82.4± 1.1 71.8± 1.2 64.3± 1.3 54.1± 1.4 45.2± 1.4 39.6± 1.4
Rational Learning 98.1± 0.4 87.6± 0.9 74.7± 1.2 60.0± 1.4 50.5± 1.4 41.1± 1.4 33.7± 1.3 27.4± 1.2
Regret Matching 98.2± 0.4 86.8± 0.9 68.4± 1.3 50.6± 1.4 36.5± 1.3 26.4± 1.2 18.2± 1.1 12.9± 0.9
Minimax Regret 97.6± 0.4 35.7± 1.3 11.2± 0.9 04.7± 0.6 n/a n/a n/a n/a

Greedy 97.2± 0.5 75.7± 1.2 51.5± 1.4 39.5± 1.4 26.5± 1.2 19.4± 1.1 14.4± 1.0 11.0± 0.9
Maneuvering

Fictitious Play 97.0± 0.5 87.5± 0.9 78.1± 1.1 65.0± 1.3 53.8± 1.4 45.6± 1.4 36.6± 1.3 30.3± 1.3
Rational Learning 96.0± 0.5 84.0± 1.0 68.3± 1.3 54.5± 1.4 42.4± 1.4 33.6± 1.3 26.5± 1.2 21.3± 1.1
Regret Matching 97.7± 0.4 82.4± 1.1 62.0± 1.3 44.8± 1.4 30.1± 1.3 19.4± 1.1 14.3± 1.0 08.8± 0.8
Minimax Regret 95.3± 0.6 42.2± 1.4 15.8± 1.0 06.8± 0.7 n/a n/a n/a n/a

Greedy 95.1± 0.6 75.0± 1.2 51.2± 1.4 34.5± 1.3 25.7± 1.2 18.8± 1.1 13.3± 0.9 10.0± 0.8

Table 2: Average complete capture percentages (%) for each configuration of predators and prey with even teams sizes of 1 to 8
agents. The adjustment from the mean, defining a 95% confidence interval, is also provided. Each cell summarizes 5000 trials.

sessed high commitment behavior, but almost no coopera-
tive behavior. In comparison, fictitious play predators would
also have a positive-feedback loop; however, this is damp-
ened by the probability that other predators might also chase
the prey. These two juxtaposed components are the key to
their success. Each component vies to tip the scale in favor
of either chasing a nearby prey or avoiding it with the under-
standing that another predator will capture it instead.

Lastly, the game structure in Defender changes over time.
The payoffs change based on the locations of the predators
and prey; the number of players and actions internal to each
predator is also dynamic. Even though the initial and final
games are different, the change is gradual, and the algo-
rithms can keep up as the system evolves. We experimented
with the update rates of the algorithms, which logarithmi-
cally improve the capture rates. Unfortunately, space con-
straints prevent us from including the graph. Addressing this
“moving the goalposts” problem is an important topic for the
future of cooperative multiagent learning (Panait and Luke
2005). Due to the limited mobility of the predators, the field-
of-view encompasses most (but not all) of the relevant infor-
mation for deciding which prey to chase. While there are sit-
uations for which an optimal decision requires non-observed
information, it is an unavoidable issue without direct com-
munication. Additionally, without direct communication or
complete information, the agents do not know the actions

of others; the actions are inferred. Predators are also unable
to correlate past observations of an agent with future ones,
given that the agent has left and re-entered the field-of-view.
This dynamism greatly affects the outcome of the game, but
it is acceptable if we assume an agent’s sensing capabilities
encompass enough pertinent information to approximately
solve its local optimization problem.

Conclusion
We have examined the direct application of game theoretic
learning algorithms to a highly information-sparse predator-
prey problem entitled Defender. This problem was designed
to incorporate many of the issues faced in realistic multia-
gent systems. With the design objective to distribute preda-
tors to prey, we leveraged the particular structure of a spe-
cial anti-coordination game, with a utility proportional to ex-
pected travel distance. We investigated fictitious play, ratio-
nal learning, regret matching, minimax regret, and greedy
predators against simple and maneuvering prey. The imple-
mentation of Defender considered all these combinations of
the predators and prey ranging team sizes from one to eight.
Our results concluded that fictitious play performed the best
overall, creating an emergent commitment and coordination
behavior. We have shown that game theory can be used to
create a rapid cooperative and emergent commitment behav-
ior while still remaining adaptive to a dynamic environment.
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