
A Distributed Communication Architecture for Dynamic Multiagent Systems

Kyle Hollins Wray
University of Massachusetts, Amherst

Amherst, MA 01003, USA
wray@cs.umass.edu

Benjamin B. Thompson
The Pennsylvania State University

State College, PA 16802 USA
bbt10@psu.edu

Abstract

We investigate the problem of creating a robust, rapidly
converging, Distributed Communication Architecture (DCA)
for the domain of low bandwidth, single channel Multia-
gent Systems (MAS) in which agents may drop in and out
of communication without prior notification. There are only
three capability-based assumptions made by the algorithm:
1) agents can classify a signal’s message as either noise,
silence, or clarity, 2) agents can classify their own mes-
sages, and 3) agents can understand one another to some de-
gree. The final structure allows agents to communicate in
a round-robin manner without any centralized or hierarchi-
cal control. We evaluate DCA’s the convergence rate through
four distinct experiments, including both a worst-case sce-
nario that consists of all agents starting simultaneously and
a more common-case scenario in which agents offset their
starting times. We examine effective throughput as the av-
erage number of clearly sent messages in a cycle to deter-
mine the amount of information successfully communicated.
Lastly, we emulate situations found in problems with moving
agents to show that agents who incorporate local observations
can improve both their convergence rates and throughput.

Introduction
Multiagent Systems (MAS) problems often benefit greatly
from direct communication. MAS communication research
is focused on both the higher-level structure of what is
sent or their messages’ internal representation (Parker 1998;
Gerkey and Mataric 2002) and the lower-level structure for
how agents can communicate, especially in communication-
limited domains (Xuan, Lesser, and Zilberstein 2001; Yanco
and Stein 1993). We focus on this lower-level, and solve a
recurring problem. In a wide range of real-world scenarios,
agents are limited low bandwidth communication on a sin-
gle channel; e.g., the RoboCup domain (Kitano et al. 1997;
Stone and Veloso 1999), cooperative task-based robotics
(Yanco and Stein 1993; Vidal et al. 2002) and time slot allo-
cation in sensor networks (Rhee et al. 2009; Lin et al. 2011).
Designing these architectures for communication can often
encounter problems given the constraint that agents cannot
communicate simultaneously, the number of agents is not
known a priori, and communication must be sustained over

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an extended period of time. The Distributed Communication
Architecture (DCA) algorithm solves this problem without
any centralized control.

The broadcast channel problem is a commonly used prob-
lem in evaluating algorithms to solve Decentralized Partially
Observable Markov Decision Processes (Dec-POMDPs)
(Bernstein et al. 2002). It consists of a set of agents seek to
collaboratively share a single channel in a broadcast setting
without any means of centralized control (Hansen, Bern-
stein, and Zilberstein 2004; Ooi and Wornell 1996). ALOHA
and its variants are the most popular solution in an ap-
plied setting (Roberts 1975; Abramson 1977; Jones et al.
2001). It operates by broadcasting a message, checking if
there was a collision, and rebroadcasting the message after
waiting for a random amount of time. A related problem in
anti-collision protocols for Radio-Frequency Identification
(RFID) also explores varying the number of slots in a com-
munication cycle and an unknown number of agents; how-
ever, the algorithms are centralized and do not support sus-
tained communication (La Porta, Maselli, and Petrioli 2011;
Cha and Kim 2006). DCA leverages the basic idea of
ALOHA, but designs round-robin pattern in which agents
reserve time slots for extended communication.

Our main contribution is an adaptive communication pat-
tern be constructed in a decentralized manner with a group
of agents, solving a kind of broadcast channel problem. Ad-
ditionally, we show how to include high-level knowledge
into this low-level process to boost performance. To demon-
strate this, we look at a commonly found situation of agents
with a limited field-of-view. We evaluate our algorithm with
four experiments, each evaluating between 1 and 50 commu-
nicating agents. Our metrics include both the convergence
rate to a round-robin pattern, in addition to the throughput
(clear messages sent). We demonstrate that DCA is an effec-
tive solution to the broadcast channel problem, which brings
ideas from the networking community into the artificial in-
telligence and multiagent communities.

The next section provides a brief overview of previous
work found in communication formation, with the subse-
quent section stating the problem statement. We then delve
into the full algorithms description with pseudocode fol-
lowed by four experiments that each evaluate between 1 and
50 communicating agents. Finally, we discusses our results
and conclusions.

Problem Statement
To remain as general as possible we enforce only minimal
requirements. The problem domain is as follows:

1. A single channel, low bandwidth communication

2. Agents require fair round-robin communication

3. The number of agents is unknown a priori

4. Agents may leave without prior notification

Given this particular problem domain, we assume that
agents have the following capabilities:

1. Agents can classify a message as noise, silence, or clarity

2. Agents can classify their own messages

3. Agents are able to understand one another

With these simple assumptions which are easily found in
many problem domains, we describe an algorithm to create
an ad hoc round-robin communication architecture.

Communication Algorithm
The general idea is to make a system for the unknown quan-
tity of n agents to each settle on a time slot index that is
exclusively held by them. An agent probabilistically selects
slots until it finds one without noise, at which point the agent
settles on that slot. Internal to all agents, this new settled slot
is shifted down to the settled slots region.

We begin by defining some terms. States are the current
function an agent is running as part of listening in the com-
munication architecture. Slots refer to the time-delimited lo-
cation on the single channel in which an agent may speak.
Also a component of an agent’s recognition of the signal’s
noise, silence, or clarity. Varying slots, denoted as the list
(ordered multiset) SV , are the slots that do not have a defini-
tive agent. Agents attempt to send their message on these
slots. Settled slots, denoted as the list (ordered multiset)
SS , are the slots agents have successfully claimed. Agents
who have settled may send a message on their respective
settled slot. Cycles, denoted as the list (ordered multiset)
S = SS ∪ SV , are the concatenation of the settled slots fol-
lowed by the varying slots. Therefore, the full cycle length
varies in proportion to the size of SS and SV .

The algorithm is structured into three states (see Figure 1)
that each agent goes through individually. The first learning
state only focuses on listening to the current communica-
tions until it fully comprehends the pattern. Next, the slot
selection state attempts to find a slot without another agent
speaking. Once that is found, the settled state allows this
agent to continue to send messages during the slot it found.

Base Functions
To allow this to work for an arbitrary MAS, we need to de-
fine the two interface functions for listening and speaking
(Algorithms 1 and 2). They handle the state function calls
and decide whether the agent should attempt to speak or not.
We state them here for completeness, but are fairly straight
forward. We define the X variable as the current internal
state of an agent, visually described in Figure 1. Agents
maintain the current slot sc ∈ S (with index c), the slot that

Figure 1: The high level state transition diagram for the
communication algorithm (top). A visual example of the
communication cycle structure (bottom) with numeric val-
ues showing the settled slot ID’s, “N” representing a noisy
signal, and “-” being a silent signal.

the agent has selected sα ∈ S (with index α), and the num-
ber of previously settled agents that dropped out of commu-
nication during any given cycle nd. Each agent is also man-
aging the slots (cycle) list S. This list describes both what
was previously heard and actual communication structure.
Therefore, its elements are the actual signal messages, i.e.,
indices communicated by other agents.

We assume lists are zero-indexed and any use of a slot
index refers to the index in the full slots list, e.g., si ∈ S
is the ith position, so if si ∈ SV , then i is still the index in
S. This notation allowed us to condense the algorithm into
a succinct representation. We also use the function type(s),
s ∈ S, as the type of message. Finally, we let the function
initialize() set all variables to 0 and assign all lists to ∅.

Algorithm 1 listen: Given a signal (message), update the
internal state of an agent’s communications architecture.
Require: ω: the new signal

1: if X = “learning” then
2: learning(ω)
3: else if X = “slot selection” then
4: slot selection(ω)
5: else if X = “settled” then
6: settled(ω)
7: end if

Note that an additional feature of the algorithm is that it
automatically generates unique indices for agents in a dis-
tributed manner.

The Learning State
The learning state’s primary purpose is to accurately find the
number of settled slots and varying slots (Algorithm 3). An
agent that is in the learning state holds two primary func-
tions. The first purpose is to check if anyone is even com-

Algorithm 2 speak: Based on the current internal state, de-
termine whether this agent should speak. If so, return their
slot index to be sent as a message in a signal.

1: if c = α and X 6= “learning” then
2: return α+ 1− nd
3: else
4: return ∅
5: end if

municating at all (lines 3-6). The algorithm waits an initial
predefined constant iterations for some form of communica-
tion denoted by Tmax, which we assume is Tmax > n. If
nothing is heard, then it moves into the slot selection state.

The second purpose for the learning state is to develop
an internal model of the communication pattern. The algo-
rithm waits until it hears the lowest communicated ID twice
with only clarity and silence in between. Once that interval
is heard, the number of clear slots (minus the repeated ID)
is a settled size. From this the current slot and remaining in-
formation can be inferred. Finally, the first communication
attempt after switching states will follow Equation 1.

This waiting behavior for settled slots benefits the system
as a whole because it prevents the addition of more agents
while a group of agents in the slot selection state are vying
for a settled slot. Adding more agents would increase time
not only from having more agents competing, but because
the number of varying slots would have to grow to accom-
modate the new ones. Each increase to the number of vary-
ing slots means a full cycle must occur with only noise and
clear signals, as is described in the next section.

The Slot Selection State
In the slot selection state, the agent randomly attempts some
of the varying slots to see if one slot might be free (Algo-
rithm 4). The random selection of a new varying slot is done
by Equation 1. Let U(a, b), a > b, a, b ∈ N, refer to a dis-
crete uniform random variable on the interval [a, b).

α← |SS |+ U(0, |SV |) (1)

The slot selection state has the agent attempt to communi-
cate its message without any other agent doing so at the same
time. Each cycle now has the settled agents speaking during
the settled slots section followed by the varying slots section
whereby this and other agents try communicating on one of
the slots. On success, it changes its state to settled with the
update slots function managing the shift to the settled slots
section. On failure, this state randomly assigns a new slot
when the cycle ends following Equation 1.

The Settled State
When an agent is in the settled state, the only feature it must
look for are message collisions on its slot, and also keeps
track of any new signals (Algorithm 5).

Once an agent has settled, it needs to communicate its
messages on its turn. Additionally, if another agent sends
a message when this agent does, causing a collision, the
default behavior is to go back into the learning state. This

Algorithm 3 learning: Learn the communication architec-
ture that other agents are using.
Require: ω: the new signal

1: S ← S ∪ {ω}
2: S− ← {s ∈ S : type(s) = “silence”}
3: if |S| > Tmax and |S| = |S−| then
4: initialize()
5: SV ← {0}
6: X ← “slot selection”
7: else if type(ω) = “noise” then
8: initialize()
9: else if type(ω) = “clarity” and |S| > 1 then

10: x← min{i ∈ {1, . . . , |S|} : si = ω, si ∈ S} ∪ {∞}
11: if x = |S| − 1 or x =∞ then
12: return
13: end if
14: S− ← {si ∈ S : i ≥ x and type(s) = “silence”}
15: SN ← {sj ∈ S : j ≥ x and type(s) = “noise”}
16: if |SN | 6= 0 or |S−| 6= 1 then
17: initialize()
18: return
19: end if
20: S ← {sx, . . . , s|S|−2}
21: i← min{i ∈ {1, . . . , |S|} : si = 1, si ∈ S}
22: S ← {si, . . . , s|S|−1, s0, . . . , si−1}
23: nd ← |{si ∈ S : i ≤ |SS | and type(si) =

“silence”}|
24: X ← “slot selection”
25: α← |S| − 1
26: update(ω)
27: end if

simple check allows for two groups of agents to merge
their communications together through resetting their inter-
nal states. It serves as a kind of error handler for agents who
might be subject to environmental noise and need to relearn
the group’s pattern. One might also remove the check in a
scenario such as robot soccer, given the opposing team could
communicate and throw off the algorithm.

Slot Organization
We must also include the slot management algorithm for the
internal slot model of an agent (Algorithm 6). It performs
the necessary adding/removing from the slots list S.

During normal time increments, this handles adding mes-

Algorithm 4 slot selection: Try to find a slot that no one else
is using.
Require: ω: the new signal

1: if c = α and type(ω) = “clear” then
2: X ← “settled”
3: end if
4: update slots(ω)
5: if c = 0 and X 6= “settled” then
6: α← |SS |+ U(0, |SV |)
7: end if

Algorithm 5 settled: This agent is settled so do not adjust
anything unless another agent selects the same slot.
Require: ω: the new signal

1: if c = α and type(ω) = “noise” then
2: initialize()
3: X ← “learning”
4: else
5: update slots(signal)
6: end if

sage signals to a list and maintaining the current slot. How-
ever, at the end of a cycle it realigns the internal slots
list by removing agents who have stopped communicating,
places newly settled agents to the left side’s settled slots,
and reevaluates the internal state. It is also responsible for
expanding the number of slots, but only when there were no
silences in the past cycle.

There is an underlying reason for resizing with no si-
lences. It comes from a combination of the respective states’
actions, namely that the slot selection state only attempts to
communicate once each cycle. From this one can infer that
the maximum number of varying slots allowable is exactly
half the number of agents in the slot selection state rounded
up, i.e., dn2 e. Since it requires a minimum of two agents to
cause a message collision and there can be no silences to
add a new slot slot. This maximum number of slots prevents
the number of varying slots from probabilistically growing
to infinity. More importantly, it aids in the learning state’s
design, which enables new agents to learn a communication
pattern.

Inclusion of Local Agent Knowledge
To test how local agent knowledge might be included in a
communication method, we present a sample scenario of-
ten encountered in MAS. The particular situation is easily
found in the RoboCup (Kitano et al. 1997), predator-prey
models (Benda, Jagannathan, and Dodhiawalla 1986), and
in pursuit-evasion problems (Vidal et al. 2002). For simplic-
ity, we only model a random placement of n agents in a n×n
grid, each with a 180 degree field-of-view in all cells above
it. Thus, the size of the grid grows with the number of agents
at a simple linear rate. All agents face the same direction and
are assumed to be traveling together at the same speed. We
use the number of fellow teammates an agent can directly
observe as a variable to adjust the varying slot it selects dur-
ing the slot selection state. For Equation 2, let m < n be the
number of visible agents (agents don’t observe themselves).
Finally, let N (µ, σ2) be the normal distribution with mean
µ and variance σ2.

α← |SS |+
⌊
max

(
0,min

[
|SV |,

N (min(m, |SV | − 1),
√
|SV |)

])⌋
(2)

This attempts to try a slot that is past the settled slot in-
dices and is forced to reside within the varying slots (via the
min/max). The inner part of the equation effectively places

Algorithm 6 update slots: Update a slot given a signal mes-
sage and increment the current slot number.
Require: ω: the new signal

1: S ← {s1, . . . , sc−1, ω, sc+1, . . . , s|S|−1}
2: c← c+ 1
3: if c < |SS | and type(ω) = “silence” then
4: nd ← nd + 1
5: end if
6: if c = |S| then
7: A← {si ∈ SS : type(si) 6= “clarity”}
8: α← α− |{si ∈ S : si ∈ A and i ≤ α}|
9: SS ← SS \A

10: B ← {sj ∈ SV : type(sj) = “clarity”}
11: C ← {sk ∈ SV : type(sk) 6= “clarity”}
12: for sj ∈ B do
13: for sk ∈ C and k < j do
14: S ← {s1, . . . , sk, . . . , sj , . . . , s|S|−1}
15: if α = j then
16: α← k
17: else if α = k then
18: α← j
19: end if
20: end for
21: end for
22: SS ← SS ∪B
23: SV ← SV \B
24: nd ← 0
25: S− ← {s ∈ S : type(s) = “silence”}
26: if |S−| = 0 then
27: SV ← SV ∪ {0}
28: else
29: c← 0
30: end if
31: end if

the mean of normal random variable at the number of vis-
ible agents m. To ensure this m is not beyond the number
of varying slots, we limit m’s influence on the mean by the
number of varying slots. When communications first begin,
there are very few varying slots in existence. Even if an agent
observes a large number of agents in front of it, it will restrict
the mean to be at the last index of the varying slot. Lastly,
the normal distribution’s standard deviation is the number of
varying slots, hence the

√
|SV | component.

This modification seems quite small but will be shown to
greatly improve performance. The main idea is to select slots
so agents in front of the team have a predilection towards
lower-indexed varying slots and agents in the back tend to
select higher-index varying slots. When there are a large
number of agents in the system, but a small number of total
slots in the communication architecture, the vast majority of
agents will center their means at the last varying slot index.
This behavior results in a large quantity of collisions around
the later varying slot indices, but few collisions towards the
initial varying slots. Thus, agents move to settled slots more
rapidly when they do not observe as many other agents. This
produces an emergent sub-system in which agents proba-

bilistically “queuing” themselves, helping agents to more
rapidly converge. It also lends itself nicely for realistic ap-
plications since agents in front of the group tend to have a
better view of the environment than the rest.

Experimentation
We include two sets of experiments. The first focuses pri-
marily on exploring the convergence rates of the algorithm.
The second shows that by incorporating local agent knowl-
edge into the equation, we can vastly improve the conver-
gence times and the effective throughput, i.e., the average
percentage of clearly sent messages per cycle. For each of
these sets, we consider the worst-case scenario in which all
of the agents start simultaneously in the slot selection state,
and a staggered scenario in which an agent enters the learn-
ing state at a random time-step offset apart from the previ-
ously indexed one following a discrete uniform distribution
of U(0, 10) slots. This staggered scenario’s indexing is al-
lowed because agents are all homogeneous with respect to
communication, so any permutation of them is equivalent.

The purpose for randomly offsetting an agent’s starting
time may not be directly apparent, but it is essential to
demonstrate the effect each of the algorithms’ states has on
the system. If the worst-case (all starting simultaneously)
was the only one considered, it would not show the compu-
tational benefits in having a collection of agents “waiting”
in the learning state. Recall that the learning state waits until
the system is settled before joining. This changes the number
of agents vying for a settled slot, improving performance.

Monte-Carlo Convergence Rate Modeling
To get a sense of how efficient the algorithm is, we look at
a collection of trials to chart the performance. Our perfor-
mance measure has two components. The main measure-
ment we use is the total number of steps until the entire
group of agents have entered the settled state. This is then
averaged over the collection of trials to gain an understand-
ing of the number of steps for the particular size of the sys-
tem. Similarly, we also investigated the average number of
clear slots, which gives us one measurement pertaining to
the “quality” of the system. This helps to infer additional
communication estimates once the actual message size is de-
termined, but is somewhat convoluted for comparative eval-
uation. To this end, we include one other point of compari-
son: the percentage of successfully sent messages per cycle
(throughput). This provides a common basis for comparing
the overall information that can be communicated.

Discussion
A common similarity across all of the results seems to be
the apparent exponential growth of the convergence rates as
a function of the number of agents in the system. This is
seen in all figures and hints at the underlying structure of the
entire algorithm. Notably, including knowledge resulted in a
25% improvement for convergence rate with 50 agents.

Comparing the convergence rates between offsetting
agents’ start times and not doing so does not seem to provide

Figure 2: Convergence rates (top) and throughput (i.e., aver-
age number of clear messages) (bottom). These results sum-
marize 1000 trials for each configuration of 1 to 50 agents in
the system. Each line denotes an initialization: simultaneous
(blue), random offset (orange), simultaneous with knowl-
edge (yellow), and random offset with knowledge (green).
The throughput of slotted ALOHA is shown in red.

a drastic difference at all. This is not too surprising because
any offset trades off pushing the convergence time back with
having fewer agents competing for variable slots. The inter-
esting results from this are found in the average percentage
of clear signals during a cycle. There is a significant increase
in the number of messages that can be sent in configurations
with agents that are delayed from entering the communica-
tion system. The overall result seems to encourage more set-
tled slots and fewer varying slots during a cycle.

Another interesting point from the figures pertains to the
throughput estimation computed by the average percentage
of clear signals in a given cycle, which appears to grow at
a logarithmic rate. From the results one might expect a sim-
ilar number of successful messages sent by a MAS of any
reasonable size (capping at around 80-85%). We see that in
the worst-case scenario (simultaneously initializing agents)
the throughput remains at about 55% at 50 agents. Includ-
ing knowledge improves this to around 70%. By placing
agents at random initialization times, we see that both the
non-knowledge and knowledge cases are approximately the
same, reaching 80-85% throughput. This similarity is caused
by the fewer number of agents vying for a clear varying slot,
reducing the need for customized slot selection equations.

Due to the similarity with slotted ALOHA, we plotted

Experiment 10 Agents 20 Agents 30 Agents 40 Agents 50 Agents
Simultaneous Start 97.6 ± 19.2 330.6 ± 45.2 695.3 ± 82.5 1190.2 ± 111.3 1809.5 ± 155.6
Random Offset 94.9 ± 18.7 328.6 ± 47.3 697.4 ± 80.8 1194.8 ± 117.3 1816.6 ± 157.3
Simultaneous Start (Knowledge) 78.9 ± 21.7 264.8 ± 54.3 552.2 ± 89.5 961.5 ± 132.6 1481.5 ± 189.8
Random Offset (Knowledge) 94.6 ± 20.0 284.6 ± 50.5 570.5 ± 85.8 965.1 ± 126.5 1458.6 ± 173.1

Table 1: For each of the four types of experiments and number of agents, this table shows the convergence rates (in number of
steps) and its corresponding standard deviation.

Experiment 10 Agents 20 Agents 30 Agents 40 Agents 50 Agents
Simultaneous Start 39.3% ± 5.5% 48.0% ± 3.7% 51.9% ± 3.0% 54.1% ± 2.5% 55.8% ± 2.2%
Random Offset 66.3% ± 5.4% 74.7% ± 3.5% 77.9% ± 2.7% 79.6% ± 2.2% 80.7% ± 2.2%
Simultaneous Start (Knowledge) 44.7% ± 7.9% 57.5% ± 5.0% 63.3% ± 3.6% 67.4% ± 2.8% 70.2% ± 2.5%
Random Offset (Knowledge) 66.8% ± 5.0% 74.1% ± 3.7% 78.2% ± 2.8% 80.3% ± 2.4% 82.1% ± 1.9%

Table 2: For each of the four types of experiments and number of agents, this table shows the throughput (i.e., average percent-
ages of clear messages sent for a cycle) and its corresponding standard deviation.

Figure 3: Examples of 10 agents starting simultaneously
(top) and at random offsets between 0-10 steps (bottom).

its theoretical (and empirically verified) maximum through-
put of 1/e, which is approximately 36.79%. We see that
DCA isn’t as efficient during the time it takes for our agents
to converge between about 1-8 agents. After that point,
our algorithm will provide a higher throughput than slotted
ALOHA. Note that once this algorithm converges to a set
pattern, the throughput goes to 100% as the stages t → ∞,
which is always better than ALOHA.

One commonly observable behavior can be found in Fig-
ure 3 when Agent 10 waits until all other agents have set-
tled before it jumps up to the available silent varying slot.

Agents tend to silently wait in groups since agents remain in
the learning state until no noise occurs in a cycle. Once the
current set of agents settle, the waiting agents will begin.

To summarize, the most desirable situation seems to be a
combination of random offsets to agent start times and incor-
porating additional agent knowledge into the system. Com-
paring just the convergence rates of each experiment type, it
appears that randomly offsetting agents does not have much
of an affect in comparison to simultaneously starting agents.
However, there is a large effect on the percentage of clear
messages, demonstrating that random offsets allow for more
communication among agents. Lastly, the inclusion of high-
level knowledge into this lower-level communication archi-
tecture algorithm always improves the overall behavior of
the agent, and therefore the system as a whole.

Conclusion

In this paper we have introduced a new algorithm to dynam-
ically form a round-robin communication architecture. This
algorithm attempts to be as general as possible, and states
a few extensions to tailor it to more specific situations. We
demonstrated a method to add local agent knowledge into
the system that greatly improves performance, as high as
a ∼25% increase in convergence rates. It is our hope that
these results show that including an agent’s local knowl-
edge into mid-to-low level algorithms (such as communica-
tions) can have a noticeable effect on overall performance.
To test this, we created a simple scenario commonly found
in the MAS research community in which agents can only
observe a subset of the total number of agents. This num-
ber was then used as a parameter in the communication al-
gorithm, demonstrating strong performance increases. We
evaluated the algorithm using several metrics, primarily fo-
cusing on convergence rates and throughput. Our four exper-
iments show that including local knowledge of an agent to
the system can vastly improve both the both the convergence
rates and percentage of clear messages. Future work might
include a mathematical model to compute the convergence
rate, and expand experimentation to a robotic domain.

Acknowledgments
This material is based upon work supported by The Office
of Naval Research (ONR) through The Naval Sea Systems
Command under Contract No. N00024-02-D-6604. The au-
thors would like to thank the anonymous reviewers for their
feedback, as well as both ONR and The Pennsylvania State
University’s Applied Research Laboratory for their support.

References
Abramson, N. 1977. The throughput of packet broad-
casting channels. IEEE Transactions on Communications
25(1):128.
Benda, M.; Jagannathan, V.; and Dodhiawalla, R. 1986.
On optimal cooperation of knowledge sources - an emperi-
cal investigation. Technical Report BCS-G2010-28, Boeing
Advanced Technology Center, Boeing Computing Services,
Seattle, Washington.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4):819–840.
Cha, J.-R., and Kim, J.-H. 2006. Dynamic framed slotted
aloha algorithms using fast tag estimation method for rfid
system. volume 2, 768–772.
Gerkey, B., and Mataric, M. 2002. Sold!: auction methods
for multirobot coordination. Robotics and Automation, IEEE
Transactions on 18(5):758–768.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, 709–715.
Jones, C.; Sivalingam, K.; Agrawal, P.; and Chen, J. 2001.
A survey of energy efficient network protocols for wireless
networks. Wireless Networks 7(4):343–358.
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; and Osawa,
E. 1997. Robocup: The robot world cup initiative. In Pro-
ceedings of the first international conference on Autonomous
agents, Agents ’97, 340–347. New York, NY, USA: ACM.
La Porta, T.; Maselli, G.; and Petrioli, C. 2011. Anticollision
protocols for single-reader rfid systems: Temporal analysis
and optimization. IEEE Transactions on Mobile Computing
10(2):267–279.
Lin, C.; Zadorozhny, V.; Krishnamurthy, P.; Park, H.; and
Lee, C. 2011. A distributed and scalable time slot allocation
protocol for wireless sensor networks. IEEE Transactions
on Mobile Computing 10(4):505–518.
Ooi, J., and Wornell, G. W. 1996. Decentralized control of a
multiple access broadcast channel: performance bounds. In
Decision and Control, 1996., Proceedings of the 35th IEEE
Conference on, volume 1, 293–298.
Parker, L. 1998. Alliance: an architecture for fault tolerant
multirobot cooperation. IEEE Transactions on Robotics and
Automation 14(2):220–240.
Rhee, I.; Warrier, A.; Min, J.; and Xu, L. 2009. Drand:
Distributed randomized tdma scheduling for wireless ad

hoc networks. IEEE Transactions on Mobile Computing
8(10):1384–1396.
Roberts, L. 1975. Aloha packet system with and without
slots and capture. SIGCOMM Comput. Commun. Rev. 5:28–
42.
Stone, P., and Veloso, M. 1999. Task decomposition,
dynamic role assignment, and low-bandwidth communica-
tion for real-time strategic teamwork. Artificial Intelligence
110(2):241–273.
Vidal, R.; Shakernia, O.; Kim, H.; Shim, D.; and Sastry, S.
2002. Probabilistic pursuit-evasion games: theory, imple-
mentation, and experimental evaluation. IEEE Transactions
on Robotics and Automation 18(5):662–669.
Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communica-
tion decisions in multi-agent cooperation: Model and exper-
iments. In Proceedings of the Fifth International Conference
on Autonomous Agents, 616–623. ACM Press.
Yanco, H., and Stein, L. 1993. An adaptive communication
protocol for cooperating mobile robots. In Proceedings of
the Second International Conference on Simulation of Adap-
tive Behavior, 478–485. MIT Press.

