
Agent Partitioning with Reward/Utility-Based Impact

William Curran
Oregon State University

Corvallis, Oregon
curranw@onid.orst.edu

Adrian Agogino
NASA AMES Research Center

Moffet Field, California
adrian.k.agogino@nasa.gov

Kagan Tumer
Oregon State University

Corvallis, Oregon
kagan.tumer@oregonstate.edu

Abstract

Reinforcement learning with reward shaping is a well es-
tablished but often computationally expensive approach to
large multiagent systems. Agent partitioning can reduce
this computational complexity by treating each partition of
agents as an independent problem. We introduce a novel
agent partitioning approach called Reward/Utility-Based Im-
pact (RUBI). RUBI finds an effective partitioning of agents
while requiring no prior domain knowledge, improves per-
formance by discovering a non-trivial agent partitioning, and
leads to faster simulations. We test RUBI in the Air Traf-
fic Flow Management Problem (ATFMP), where there are
tens of thousands of aircraft affecting the system and no ob-
vious similarity metric between agents. When partitioning
with RUBI in the ATFMP, there is a 37% increase in per-
formance, with a 510x speed increase over non-partitioning
approaches. Additionally, RUBI matches the performance of
the current domain-dependent ATFMP gold standard using
no prior knowledge and with 10% faster performance.

1 Introduction
Two key elements in a multiagent reinforcement learning
system are minimizing computation time and maximizing
coordination. Reward shaping is a field in multiagent rein-
forcement learning that focuses on the design of rewards,
and has been shown to assist in multiagent coordination.
This reward shaping is often computationally expensive, and
in large, highly coupled domains reward shaping quickly be-
comes computationally intractable.

Modeling the reward shaping technique (Proper and
Tumer 2012) in relatively large domains (approx. 400
agents) works well, but requires tens of thousands of ran-
domly generated examples to obtain these approximations.
On the other hand, partitioning agents into hierarchies
(Parker and Tumer 2012) or teams (Curran, Agogino, and
Tumer 2013) speeds up computation time for much larger
domains (approx. 10,000-40,000 agents) while still using the
reward shaping technique without approximation error. In
order to create these hierarchies or teams, the algorithm de-
signer must also have a fundamental understanding of how
agents are coupled. These approaches break down in com-
plex domains where the amount of impact an agent has on

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

another is unknown, and in situations where the algorithm
designer has no domain knowledge.

In this paper we introduce Reward/Utility-Based Impact
(RUBI) scores. RUBI partitions agents by determining the
effect of one agent’s action on another agent’s reward. Us-
ing this metric it develops similarity metrics between all
agents in order to usefully partition agents and therefore re-
duce the complexity of the learning problem. In contrast to
many other partitioning approaches, this has the advantage
of requiring no domain knowledge.

We test RUBI in the El Farol Bar Problem (Arthur 1994)
and the Air Traffic Flow Management Problem (ATFMP).
In the ATFMP we use the approach developed by Curran
et al. (2013), Agogino (2009) and Rios and Lohn (2009).
In this domain the goal is to minimize both congestion and
delay associated with the air traffic in the United States. Be-
cause the airspace has many connections from one airport to
another, the congestion and associated delay can propagate
throughout the system. Delays can be used to better coordi-
nate aircraft and mitigate the propagation of congestion and
the associated delay, but which aircraft should be delayed?
There are tens of thousands of flights every day within the
United States (OPSNET 2011), making the search space in
this problem huge.

The contributions of this work are:

• Generality: RUBI requires no prior knowledge of the do-
main, using it only to obtain reward information.

• Ease-of-use: RUBI removes the need to derive similarity
metrics from the domain, removing the need for domain
experts in situations where a domain expert isn’t avail-
able.

• Performance: RUBI discovers non-trivial agent partition-
ing by using a reward function to partition agents.

• Speed: RUBI leads to a larger number of partitions with-
out losing performance, leading to more independence
and therefore faster simulations.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the related work in agent partitioning, mul-
tiagent coordination and reward shaping. Section 3 contains
the key contribution of this work, RUBI, and describes the
basic algorithm and defines reward-based impact. In Section
4 we describe the experimental validation approach taken

using multiagent coordination in both the Bar Problem and
ATFMP. Experimental results are then provided in Section
5, followed by the discussion and conclusion in Sections 6
and 7.

2 Background
To motivate our approach, we outline previous work per-
formed in the field of agent partitioning and describe the
reward shaping technique used in this work.

Agent Partitioning
Previous work in agent partitioning has focused mainly on
how to divide the problem, by the state space, actions or
goals. Jordan and Jacobs (1993) developed the Hierarchi-
cal Mixtures of Experts (HME) method to partition the state
space directly, such that different agents can focus on spe-
cific regions of the state space. This method works well in
non-linear supervised learning tasks. However, many multi-
agent learning domains, such as those in this paper, are un-
supervised.

A common solution is to partition actions so that each
agent is responsible for a small number of actions. Sun and
Pearson (1998) divided actions into two types, and a sepa-
rate agent handled each type. This approach leverages direct
domain knowledge, which is not always available, and par-
titioning actions does not apply well in domains where all
actions need to be explored.

Another approach is to partition system-level goals into
smaller tasks. In the work by Dayan and Hinton (1993), they
accomplished goal partitioning through on-line task alloca-
tion, where agents are organized in a hierarchy, and high-
level agents assign goals to agents lower in the hierarchy.
In the work by Reddy and Tadepalli (1997), the approach
is more structured; agents learn the partitioning of the goal
through externally provided examples. These approaches as-
sume that the system-level goal can be subdivided, which is
not always the case.

Overall, current partitioning techniques work well in
smaller multiagent system domains. Zhang and Lesser
(2010) effectively partition 324 agents in a distributed task
allocation problem. They use joint-even-driven interactions
and conditional probabilities at every timestep to compute
the ‘gain of interactions’. This additional on-line compu-
tation makes this approach becomes computationally in-
tractable in domains with tens of thousands of agents. How-
ever, the work of Zhang and Lesser has a different focus
than the work presented here. Zhang and Lesser effectively
increase performance in their experiments, where we wish
to scale to extremely large MAS while sacrificing as little
performance as possible.

Reward Shaping
In learning algorithms reward design is important for keep-
ing convergence time low and performance high. In many
multiagent coordination domains there is a difference be-
tween maximizing the system-level reward and maximizing
a single agent’s reward. If an agent always takes the locally-
optimal action, it does not always maximize the system-

level reward; this is known as the Tragedy of the Commons
(Hardin December 1968).

The difference reward (Wolpert and Tumer 2002) is eval-
uated such that each agent’s reward is related to the individ-
ual’s contribution to team performance, thereby improving
the signal-to-noise ratio. This leads to better policies at an
accelerated convergence rate. The difference reward is de-
fined as Di(z) = G(z) − G(z − zi + ci), where z is the
system state, zi is the system state with agent i, and ci is a
counterfactual replacing agent i. This counterfactual offsets
the artificial impact of removing an agent from the system.

3 RUBI
In this section we will describe in detail the Reward/Utility-
Based Impact (RUBI) algorithm. We will first describe a
general overview of RUBI, and the implementation. We will
then review the variety of ways to develop RUBI impact
scores and simulations.

RUBI Overview
In this work we introduce an autonomous partitioning algo-
rithm requiring no domain knowledge, the Reward/Utility
Based Impact algorithm. Domain-based partitioning directly
looks at the domain and partitions agents together based on
how similar two agents are. Instead, we develop an initial
agent similarity matrix that uses no knowledge about the do-
main, and partitions agents together based on the impact of
one agent to another. This matrix can then be used as an
input to a hierarchical agglomerative clustering algorithm.
Additionally, by removing all knowledge about the domain
and partitioning based on reward, RUBI can be used to dis-
cover non-trivial indirect interactions encoded in a reward
signal.

RUBI is motivated by a simple concept: If an agent is re-
moved from the system, how does that impact other agents?
If one agent’s action heavily impacts another agent’s reward
(positively or negatively), those agents are coupled enough
to be partitioned together. The RUBI algorithm computes a
localized reward for each agent with agent i in the system,
and then compares that reward to the localized reward for
each agent if agent i is not in the system. This partitioning
algorithm is based around the central idea:

|Li(z)− Li(z − zj)| > |Lk(z)− Lk(z − zj)| ⇒ (1)
Similarity(i, j) > Similarity(k, j)

where Li(z−zj) is the localized reward of agent i if j is not
in the system, Lk(z − zj) is the localized reward of agent
k if j is not in the system, and Li and Lk are the localized
rewards of i and k when all agents are in the system. This
means that if the localized reward of agent i changes more
than the localized reward of agent k when agent j is taken
out of the system, agent j has more effect on agent i than
on agent k. This is the essential idea behind RUBI, and is
encoded in RUBI (Algorithm 1) on line 11.

The RUBI Algorithm
The RUBI algorithm (Algorithm 1) first initializes the im-
pact table, an N x N matrix C, where N is the number of

agents within the system. It then calculates actions based on
theACT () function, which is typically random action selec-
tion. RUBI then runs a simulation with all of the agents in
the system and the localized reward is calculated for every
agent. We then remove an agent from the system, recalculate
the reward for each agent, and update the impact table, C.
Since this is a localized reward, and the algorithm is highly
parallelizable, this is a fast operation. This is a high level
understanding of RUBI, and the following sections will ex-
plain how the impact data is computed, simulation specifics,
and the ACT () function.

Algorithm 1 Reward/Utility-Based Impact Algorithm

1: function RUBI(sim)
2: C ← NxN
3: for i← 1 to iterations do
4: actions← ACT ()
5: sim.run(actions)
6: L(z)← sim.getRewards()
7: for r ← 1 to N do
8: sim.removeAgent(r)
9: L(z − zr)← sim.getRewards()

10: for a← 1 to N do
11: Cr,a ← Cr,a + |La(z)− La(z − zr)|
12: end for
13: sim.addAgent(r)
14: end for
15: end for
16: end function

Implementation
The impact data used to compute the similarity matrix are
obtained from a localized reward or utility with respect to
an agent. Typically the use of local rewards in congestion
problems leads to a suboptimal solution. However, because
RUBI is implemented prior to learning, we can use the local
reward to identify agent similarity, and in the learning stage
use a reward which will promote coordination.

In this work we use reinforcement learning, but since
RUBI acts outside the learning process, it can be applied
to any system using a learning mechanism. RUBI uses lo-
cal rewards to construct the partitions, but the developer
can specifically build a localized reward for the partition-
ing. When computing the difference between the global re-
ward with all agents and the global reward without a specific
agent, we compute the difference reward. The difference re-
ward represents how much an agent impacts the system, but
the goal here is to find how much one agent impacts another
agent.

The impact table, C, is an accumulation of impact scores.
Given enough iterations, this accumulation is informative
enough to perform accurate partitioning. In this research we
are interested more in the relative impact score from one
agent to another, rather than what the explicit impact score
is. This iterative approach requires at minimum enough iter-
ations to evenly distribute over all actions an agent can take.

Ideally each action should be sampled many times for an
accurate impact estimate.

Simulation
The simulation is also an aspect that can be widely varied
by the developer when using RUBI. One example borrows
some of the concepts from transfer learning.

Transfer learning is a traditional approach used in both
classification and learning to apply what is classified or
learned from a smaller and easier domain to a larger more
complicated domain. One subset of transfer learning is trans-
fer clustering. Given a proper mapping, clusters learned in a
small simulation can be applied to a larger simulation (Yu,
Dang, and Yang 2012). We can apply the same concepts de-
veloped in transfer clustering to this RUBI simulation. Any
simulation can be used during partitioning, as long as there
is a mapping from the RUBI simulation to the learning sim-
ulation. This approach is beneficial in domains where the
simulation is costly and a mapping can be discovered.

The ACT () function returns a list of agent actions to use
in the RUBI simulation. The fundamental goal of ACT ()
is to have as much of the interactive state space explored
as possible, but we cannot exhaustively search the entire
state space, as that would be both impractical and compu-
tationally impossible. For this reason we choose to take ran-
dom actions. When agents take random actions, they are not
driven by any motivating logic, and impact scores will be bi-
ased only toward agents who consistently impact each other.

4 Experimental Validation
We validate our approach in the heterogeneous bar problem
and the ATFMP. The El Farol Bar Problem (Arthur 1994) is
a benchmarking domain typically used in preliminary work
as an abstraction of a congestion domain. We use this do-
main to show preliminary results demonstrating the general
effectiveness of RUBI before applying it to the more com-
plex ATFMP. We then provide an overview of the ATFMP
and our multiagent approach. In both experiments, agents
learned using Action-Value Learning (Stateless Q-Learning)
with a zero-initialized value table. This is a stateless ap-
proach where agents map actions to values representing the
quality of that action.

In this work, we treat each partition of agents as an in-
dependent problem. Agents from one partition could poten-
tially affect the environment of agents in another partition,
but we attempt to minimize the partition overlap. We will
use the term reward-independent to denote when one parti-
tion of agents will have no impact on the rewards of other
partitions.

Heterogeneous Bar Problem
The El Farol Bar Problem (Arthur 1994) is an abstraction
of congestion problems. In this problem there is a capac-
ity c which provides the most enjoyment for everyone who
attends the bar on that particular night. This is a stateless
one shot problem where agents choose the night they attend
the bar, and receive a reward based on their enjoyment. The

traditional bar problem local reward is a function of the at-
tendance of that night:

Li = e
−xi(z)

c (2)

where xi(z) is the attendance on the night agent i went to
the bar. The system-level reward is a simple summation of
these local rewards across all agents:

G(z) =

K∑
k=0

xk(z)e
−xk(z)

c (3)

where k is the index of the night, and xk(z) is the number
of people who attended on the kth night.

From the reward, we know that if there are enough agents
to be equally spread out across the bars, n ≤ ck, this be-
comes a scheduling problem. This problem becomes a con-
gestion problem when there are more than twice as many
agents as the capacity for each night allows, n > 2ck. In
this case a good group policy is for the majority of agents
to attend one night, thus making agents attending that night
receive a very low reward, and the rest of the agents equally
distributing over the rest of the nights such that the num-
ber of agents for each other night becomes c, receiving the
optimal reward for those nights.

In order to test RUBI’s effectiveness at partitioning in con-
gestion problems, we modify the bar problem by introduc-
ing heterogeneous agents that can attend the bar only a sub-
set of nights, rather than any night. The problem is still the
same, but there are now t types of agents. This modifica-
tion gives us an intuitive partitioning of agents and allows us
to directly compare a direct learning approach that finds the
near-optimal solution to the partitioning given by RUBI.

Air Traffic Flow Management Problem
The ATFMP is a large congestion problem. Congestion
problems are defined as a problem where agents share the
same action space, and system performance is a function of
how many agents take each action. Many congestion prob-
lems require coordination between agents, such that one
agent must take a locally suboptimal action in order to ben-
efit another agent, and raise the system-level reward.

The ATFMP addresses the congestion in the National
Airspace (NAS) by controlling ground delay, en route speed
or separation between aircraft. The NAS is divided into
many sectors, each with a restriction on the number of air-
craft that may fly through it at a given time, known as en
route capacities. Additionally, each airport in the NAS has
an arrival and departure capacity that cannot be exceeded.
Eliminating the congestion in the system while reducing the
amount of delay each aircraft incurs is the fundamental goal
of ATFMP.

The approach we use in the ATFMP follows the same ap-
proach by Curran et al. (2013), Agogino (2009) and Rios and
Lohn (2009), who removed congestion completely from the
system algorithmically through the use of a greedy sched-
uler. This greedy scheduler analyzed the schedule after each
agent had taken an action, and greedily assigned delays to
remove congestion. A high level view of this approach is

as follows. First, they computed partitions of agents using
a domain-based similarity metric of sector overlap and hi-
erarchical agglomerative clustering. They treated each par-
tition independent of each other only when computing the
reward, and therefore only computed rewards relative to the
agents within a partition. They then performed multiagent
reinforcement learning using the difference reward and the
greedy scheduler. They found that combining the multiagent
reinforcement learning with reward shaping and the greedy
scheduler turns this into a computationally intractable task.
They solved this problem with domain-based agent parti-
tioning, showing that rewards can be computed many times
faster with minimal performance degradation.

Agent Definition In this paper, agents are assigned to one
of 35,844 aircraft with cooperation enforced by airport ter-
minals. Aircraft flight plans are from historical flight data
from the FAA. Therefore, the only aspect of the environ-
ment we can change is the ground delay for each aircraft.
Agents may select a certain amount of ground delay from 0
to 10 minutes (11 actions) in the beginning of every simula-
tion. The FAA data has the sector location of each plane for
every minute that plane was in service. Therefore, adding
ground delay simply shifts a plane’s flight plan by that many
minutes. The greedy scheduler then checks if the flight plans
cause any congestion, and further delays planes to eliminate
congestion from the system.

In this formulation, agents do not have the capability to
change their action based upon the system once the simu-
lation starts, so feedback can only be given once per simu-
lation. Because agents are given no knowledge of the en-
vironment, they have no state. This simplifies the learn-
ing problem for each agent, but complicates coordination.
Agents must choose an action without prior knowledge of
other agents’ choices, and must learn how the environment
is changing, and simultaneously what action to take.

Reward Structures In this section we first develop the
system-level reward. This reward represents how well the
system as a whole is performing. We then develop the dif-
ference reward from the system-level reward. The difference
reward represents how much a particular agent contributes to
the system-level reward. Agents should be rewarded with the
difference reward, and system performance should be mea-
sured as the system-level reward.

The system-level reward in the ATFMP focuses on the
cumulative delay (δ) and congestion (C) throughout the sys-
tem:

G(z) = −(C(z) + δ(z)) , (4)
The total congestion penalty is the sum of differences be-

tween sector capacity and the current sector congestion. The
total delay is the sum of delays over all aircraft.

Agogino and Rios originally had the idea of adding a
greedy scheduler to algorithmically remove congestion from
the system, while simultaneously using learning to minimize
delay. We follow this approach, and therefore our system-
level reward is simply the delay in the system, δ(z).

With so many agents, tens of thousands of actions simul-
taneously impact the system, causing the reward for a spe-
cific agent to become noisy with the actions of other agents.

An agent cannot learn an optimal solution using such a noisy
reward signal. A difference reward function reduces much
of this noise, and is easily derived from the system-level re-
ward:

Di(z) = δ(z − zi + ci)− δ(z) , (5)

where δ(z − zi + ci) is the cumulative delay of all agents
with agent i replaced with counterfactual ci.

When using RUBI in the ATFMP we developed a parti-
tioning reward by simplifying the simulation and using con-
gestion information. At a high level we want to encapsulate
how one agent affects another in the reward. We removed
the greedy scheduler and used the congestion as information
for the similarity data:

R = −(C(z)) , (6)

This is a perfect example of how different the reward can be
during partitioning than during learning.

Computational Complexity When performing reinforce-
ment learning with the difference reward, you must remove
an agent and recompute the system-level reward. This com-
putation occurs once for each agent. In the ATFMP, the
system-level reward is the summation of delays, an O(n)
routine. Therefore, each learning iteration is on the order of
O(n ∗ O(removeAgent(a)) + n2), where n is the num-
ber of agents. In the ATFMP each removeAgent(a) call
must call the greedy scheduler, an O(n) algorithm, leav-
ing the time complexity of the learning system to remain
O(n2+n2) = O(n2). When the complexity of removing an
agent becomes larger than linear time, the cost of removing
an agent dominates the cost of computing the agent reward.
In this case the agent partitioning becomes more useful.

When using agent partitioning, this time complexity can
be drastically reduced. When computing time complexity,
the number of agents, n, can be replaced with the number of
agents per partition pn squared multiplied by the number of
partitions, p:

O(n2) = O(p2n ∗ p) (7)

With many agents we see a significant speedup. If we have
10,000 agents in the system, and convert that to 100 parti-
tions of 100 agents we get 106 iterations as opposed to 108,
two magnitudes lower. Additionally, the more partitionable
the domain, the better the speed up performance. If a do-
main is highly partitionable, then p becomes larger and pn
becomes smaller, meaning fewer agents per partition. This
lowers time complexity by lowering the faster-growing term,
and becomes extremely important when removeAgent(a)
involves a high time complexity operation. Also, keep in
mind this is a growth rate complexity analysis. In actuality,
the speed up is much higher. For example, in the ATFMP
the greedy scheduler only has to reschedule the number of
agents within each partition, rather than all agents.

5 Results
During preliminary analysis, RUBI works as expected in
simple congestion problems, such as the El Farol Bar Prob-
lem (Arthur 1994). When we apply RUBI during partition-
ing in the ATFMP, simulation time decreases and the ease of

Figure 1: As the number of partitions decrease, the agents
receive more information about the environment, leading to
better performance at the cost of speed.

RUBI application raises over developing a similarity metric.
The removal of domain knowledge allows the same RUBI
algorithm to be used in simple problems as well as the
ATFMP with no effort and without any need to develop a
similarity metric.

RUBI Performance in the Bar Problem
In our formulation of the heterogeneous bar problem each
agent is placed on a team of other agents who go on the
same subsets of days. We used 10 nights, 1000 agents, and
10 different types of agents during experimental runs. Each
type of agent randomly generated 3 nights the agents of that
type can go to the bar, and each agent was randomly given a
type.

When partitioning agents with RUBI in the heterogeneous
bar problem agents took random actions, and the localized
reward was simply the local reward used traditionally (Equa-
tion 2). In this experimental set up, partitions had some over-
lap, as it is very unlikely that there is a type of agent com-
pletely reward independent from all other types. This causes
performance to degrade when using partitioning. Figure 1
shows that this degradation is minimal with fewer number
of partitions, and increases as more partitions are added,
and additionally shows the computational speed-up involved
when having many smaller partitions. This emphasizes the
fact that partitioning without reward independent partitions
increases speed at the cost of performance.

RUBI Performance in the ATFMP
When partitioning agents using RUBI in the ATFMP agents
took random actions, the greedy scheduler was not used, and
the localized reward for each agent involved only conges-
tion (Equation 6). Using RUBI, agents were partitioned to-
gether based on whether their actions cause congestion to
other agents.

Partitioning with RUBI and the difference reward outper-
formed the greedy scheduler. Figure 2 shows a variety of
partitions outperforming the greedy scheduler. During anal-
ysis, we found that the final performance of the ATFMP us-
ing RUBI-based partitioning was similar to domain-based
partitioning performance. This is because at a converged

Figure 2: Again, we see a trade-off between performance
and speed.

partitioning, all agents are considered reward-independent.
The key benefit of RUBI-based partitioning was that a
reward-independent partition involved 61 partitions, but in
domain-based partitioning the smallest was 3. This leads to
faster processing time at no cost to performance.

When partitioning in a multiagent system, unless parti-
tions are reward-independent, there is a trade-off between
faster simulation time/reward calculation and performance.
When partitioning with RUBI, with the slowest simulation
there is a 37% increase in performance over the greedy
scheduler, with a 510x speed up over non-partitioning ap-
proaches, and with a larger number of partitions we obtained
a 5400x speed increase with a 20% increase in performance.
Since non-partitioning approaches are computationally in-
tractable in the ATFMP, we compare the computational time
per learning step, rather than the overall time taken.

In addition, the partitioning using RUBI converged to a
reward-independent partitioning that included many more
partitions than domain-based partitioning. In a reward-
independent partitioning, more partitions reduce the compu-
tation while incurring no loss of performance. The reward-
independent domain-based partitioning included 3 parti-
tions, while partitioning with RUBI yielded 61 partitions.
This is due to using reward-based impact as a similarity
metric. The actions of two agents may greatly affect each
other during simulation, but their reward-based impact on
each other might still be zero. For example, if two agents go
through the same sectors, but neither agent causes another
agent more or less congestion, then the difference in local
reward will be zero, even though those aircraft affect each
other. This leads to more partitions and faster simulations.

6 Discussion
One of the key strengths of RUBI is its sheer simplicity
and generality combined with computing highly informa-
tive similarity scores. It needs no prior knowledge about the
domain to perform partitioning, but instead simply needs
a localized reward from each agent to build the similarity
matrix. This localized reward can be easily obtained from
the system-level reward or utility already developed for the
learning approach. This makes RUBI highly generic and can
be applied to any multiagent domain. It can treat the multi-

agent system as a black box, giving it random actions and
receiving rewards. It can also discover non-trivial agent cou-
pling.

Since RUBI uses a localized reward as partitioning data,
any effect one agent has on another agent will be encoded in
this reward. For example, if an agent a is removed from the
system, and agent b’s reward changes, it means that agent a
affects agent b in a direct or indirect way. This indirect effect
can be captured by RUBI and used as additional information
when partitioning, leading to higher quality partitions in do-
mains with complex interactions.

Another benefit of RUBI is that partitions built using
RUBI are likely to be greater in number without loss of
performance. This leads to faster computation time due to
fewer agents per partition. Domain-based partitioning based
on agent similarity encodes how often two agents impact
each other. RUBI on the other hand looks more into how the
actions of one agent impact another agent’s rewards. For ex-
ample, suppose in a congestion scenario agent a and agent b
go through the same part of the environment, but are never
congested. Using domain-based partitioning, two agents that
go through the same area many times would be partitioned
together, so agent a and agent b would be partitioned to-
gether. In partitioning using RUBI, if over a few thousand
trials the reward impact of each agent is always 0, those
agent’s actions never impact each other’s rewards, so they
would not be partitioned together. The same is true if the
congestion of each agent remains the same non-zero value;
the actions do not affect the reward, so they are not parti-
tioned together.

Lastly, RUBI was able to find an effective partitioning for
35,000 agents in the ATFMP within a few hours. This is a
pre-processing technique and is not included in the learning
speed. RUBI was able to reduce the amount of computation
in the ATFMP by hundreds of hours, and therefore the addi-
tional computation is negligible.

7 Conclusion
This paper introduces RUBI, a partitioning algorithm that
computes reward-based impacts to perform agent partition-
ing, removing the need for prior knowledge of the system.
This method also removes the need to develop similarity
metrics derived from expert domain knowledge. Addition-
ally, by removing all knowledge about the domain and in-
stead partitioning based on reward, RUBI can be used to dis-
cover non-trivial indirect interactions encoded in a reward
signal. Since RUBI uses only a reward signal to compute
impacts, it will theoretically work in any domain where par-
titioning is useful.

Future work in RUBI would involve performing a formal
analysis of the relation between the number of iterations
of RUBI and partition performance. Additionally, approxi-
mating the impact score of each agent, rather than using an
accumulation, has the potential of being informative when
performing an analysis of a system. Lastly, performing dis-
tributed clustering would be an important, yet simple exten-
sion to this work.

This work was partially supported by the National Sci-
ence Foundation under Grant No. CNS-0931591.

References
Agogino, A. 2009. Evaluating evolution and monte carlo for
controlling air traffic flow. In Proceedings of the 11th An-
nual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers.
Arthur, B. W. 1994. Inductive reasoning and bounded ratio-
nality. In American Economic Review (Papers and Proceed-
ings), volume 84, 406–411.
Curran, W. J.; Agogino, A.; and Tumer, K. 2013. Address-
ing hard constraints in the air traffic problem through parti-
tioning and difference rewards. In Proceedings of the 2013
international conference on Autonomous agents and multi-
agent systems.
Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement
learning. In Advances in Neural Information Processing
Systems 5, 271–278. Morgan Kaufmann.
Hardin, G. December 1968. The tragedy of the commons.
Science 162:12431248.
Jordan, M., and Jacobs, R. A. 1993. Hierarchical mixtures
of experts and the em algorithm. In Neural Networks, 1993.
IJCNN ’93-Nagoya. Proceedings of 1993 International Joint
Conference on, volume 2, 1339–1344 vol.2.
OPSNET, F. 2011. US Department of Transportation web-
site. (http://www.faa.gov/data statistics/).
Parker, C. H., and Tumer, K. 2012. Combining difference
rewards and hierarchies for scaling to large multiagent sys-
tem. In AAMAS-2012 Workshop on Adaptive and Learning
Agents.
Proper, S., and Tumer, K. 2012. Modeling difference re-
wards for multiagent learning. In Proceedings of the 11th
International Conference on Autonomous Agents and Multi-
agent Systems - Volume 3.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In In Proceedings of
the 14th International Conference on Machine Learning,
278–286. Morgan Kaufmann.
Rios, J., and Lohn, J. 2009. A comparison of optimiza-
tion approaches for nationwide traffic flow management. In
Proceedings of the AIAA Guidance, Navigation, and Control
Conference, Chicago, Illinois.
Sun, R., and Peterson, T. 1998. Some experiments with a
hybrid model for learning sequential decision making. In-
formation Sciences 111:83–107.
Wolpert, D. H., and Tumer, K. 2002. Collective intelligence,
data routing and Braess’ paradox. Journal of Artificial Intel-
ligence Research 16:359–387.
Yu, L.; Dang, Y.; and Yang, G. 2012. Transfer clustering via
constraints generated from topics. In Systems, Man, and Cy-
bernetics (SMC), 2012 IEEE International Conference on.
Zhang, C.; Lesser, V.; and Abdallah, S. 2010. Self-
organization for coordinating decentralized reinforcement
learning. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: Volume 1 -
Volume 1, AAMAS ’10, 739–746. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

