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Abstract

Flocking is a fascinating collective behavior exhibited
by many different animals including birds and fish. As
understood by biologists, the overall flocking behavior
emerges from relatively simple local control rules by
which each individual adjusts its own trajectory based
on those of its closest neighbors. We consider the pos-
sibility of adding a small set of influencing agents, that
are under our control, into a flock. Specifically, in this
paper we consider where in the flock to place the influ-
encing agents that we add to the flock. Following the
ad hoc teamwork methodology, we assume that we are
given knowledge of, but no direct control over, the rest
of the flock. We use the influencing agents to alter the
flock’s trajectory, for instance to avoid an obstacle. We
define several methodologies for placing the influenc-
ing agents into the flock, and compare them via detailed
experimental results.

1 Introduction
Flocking is an emergent swarm behavior found in various
species in nature. Each animal in a flock follows a simple
local behavior rule, but this simple behavior by individual
agents often results in group behavior that appears well or-
ganized and stable. Flocking is typically studied under the
assumption that all of the agents are identical or represent
a small set of well-defined behavior types. Indeed, various
disciplines have studied flocking in order to characterize its
emergent behavior. In our work, we instead consider how to
lead a flock to particular behaviors by adding some control-
lable agents to the flock.

For example, imagine that a flock of migrating birds is fly-
ing directly towards a dangerous area, such as a wind farm
or an airport. Our goal is to encourage the birds to avoid the
dangerous area without significantly disturbing them. Since
there is no way to directly control the flight path of the birds,
we must instead alter the environment so as to induce the
flock to alter their flight path as desired. In this work, we
choose to alter the environment by adding influencing agents
to the flock. The influencing agents — which could be in the
form of robotic birds1, robotic bees (Shang et al. 2009) or ul-
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tralight aircraft2 — follow our algorithms but are perceived
by the rest of the flock as one of their own.

Following well-recognized flocking models (Reynolds
1987), we assume that each bird in the flock dynamically
adjusts its heading based on that of its immediate neighbors.
Our previous work has considered how randomly placed in-
fluencing agents should behave so as to influence the flock
to face a particular direction or maneuver along a path so
as to avoid an obstacle (Genter, Agmon, and Stone 2013;
Genter and Stone 2014). In our work presented in this paper,
we examine how the influencing agents should be placed
in the flock. Specifically, our current research question is:
where should influencing agents be initially located within a
flock to maximize their influence on the flock?

The remainder of this paper is organized as follows. Sec-
tion 2 situates our research in the literature and Section 3
introduces our problem and necessary terminology. Section
6 reviews our past work on how the influencing agents de-
cide how to behave. Section 5 introduces our graph-based
method for deciding where to place the influencing agents
and Section 6 introduces our approach for control of the in-
fluencing agents. We discuss our experiments in Section 7
and then Section 8 concludes.

2 Related Work
Reynolds introduced the flocking model that we use in
this work (1987). Reynolds focused on creating a flocking
model that looked and behaved realistically. His model con-
sisted of three simple steering behaviors that determine how
each agent behaves based on the agents around it. Vicsek
et al. considered only one aspect of Reynolds’ model in
physics work that studied the self-emergent nature of flock-
ing (1995). However, neither of these lines of research con-
sidered how to influence the flock to adopt a particular be-
havior by introducing agents into the flock.

Jadbabaie et al. considered the impact of adding a con-
trollable agent to a flock (2003). They used just one aspect
of Reynolds’ model and showed that a flock with a control-
lable agent will always converge to the controllable agent’s
heading. Su et al. also presented work that used a control-
lable agent to make the flock converge (2009). Celikkanat
and Sahin used informed agents to lead the flock by their
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preference for a particular direction (2010). Our work is dif-
ferent from these lines of research in that they influence the
flock to converge to a target heading eventually, while we
influence the flock to converge quickly.

Couzin et al. considered how animals in groups make in-
formed, unanimous decisions (2005). Couzin et al. showed
that only a very small proportion of informed agents is re-
quired for such decision, and that the larger the group the
smaller the proportion of informed individuals required. Fer-
rante et al. used communication to coordinate a flock to
move towards a common goal (2010). These two lines of
research are different from ours because they do not con-
sider how to control agents by considering and accounting
for how the other agents will likely react.

Han et al. assume that an influencing agent can be placed
at any desired position at any time step (2006). Because of
this assumption, the authors place the influencing agent at
the position of the ‘worst’ flocking agent, which is the one
that deviates from the desired orientation the most. In our
work, we consider the assumption that the influencing agents
can be placed as we want in the first time step. However, un-
like Han et al. we do not allow teleporting and hence we can
not continuously place an influencing agent at the ‘worst’
flocking agent.

To the best of our knowledge, the work presented in this
paper is the first that considers how to place controllable
agents into a flock that aim to influence the flock towards
a particular behavior.

3 Problem Definition
To fully specify our problem, we must 1) specify a model
of the flock, 2) specify the possible options for placing in-
fluencing agents initially, 3) specify the actions available to
the influencing agents, and 4) specify the performance ob-
jective. This section does so, and also describes the concrete
simulation environment that we use in our experiments. Our
proposed methodologies for addressing the defined problem
are presented in Sections 5 and 6.

3.1 Flocking Model
To model the flock, we use a simplified version of Reynolds’
Boid algorithm for flocking (Reynolds 1987) that is similar
to the model utilized in (Genter, Agmon, and Stone 2013).

The flock is comprised of two types of agents. Specif-
ically, the n agents that comprise the flock consist of
k influencing agents and m flocking agents, where k +
m = n. The influencing agents {a0, . . . , ak−1} are agents
whose behavior we can control, while the flocking agents
{ak, . . . , aN−1} are agents that we cannot directly control.

Each agent in the flock has a velocity, position in the en-
vironment, and an orientation. Each agent ai moves with
velocity vi. At each time step t, each agent ai has a posi-
tion pi(t) = (xi(t), yi(t)) in the environment and an ori-
entation θi(t). Each agent’s position pi(t) at time t is up-
dated after its orientation is updated, such that xi(t) =
xi(t−1)+vi cos(θi(t)) and yi(t) = yi(t−1)−vi sin(θi(t)).
Hence, the current state of agent ai at time t can be repre-
sented by its (xi(t), yi(t),θi(t)) pose.

Agents in a flock update their orientations based on the
orientations of the other agents in their neighborhood. Let
Ni(t) be the set of ni(t) ≤ n agents (not including agent
ai) at time t which are located within a visibility radius r
of agent ai. This visibility radius defines each agent’s neigh-
borhood. The global orientation of agent ai at time step t+1,
θi(t+ 1), is set to be the average orientation of all agents in
Ni(t) (not including itself) at time t. Formally,

θi(t+1) = θi(t)+
1

ni(t)

∑
aj∈Ni(t)

calcDiff(θj(t), θi(t)) (1)

We use Equation 1 instead of taking the average orientation
of all agents because of the special cases handled by Algo-
rithm 1. Throughout this paper, we restrict θi(t) to be within
[0, 2π).

Algorithm 1 calcDiff(θi(t), θj(t))
1: if ((θi(t)− θj(t) ≥ −π) ∧ (θi(t)− θj(t) ≤ π)) then
2: return θi(t)− θj(t)
3: else if θi(t)− θj(t) < −π then
4: return 2π + (θi(t)− θj(t))
5: else
6: return (θi(t)− θj(t))− 2π

3.2 Influencing Agent Initial Placement
The influencing agents join the flock in order to influence
the flock to behave in a particular way. Our previous work
(Genter and Stone 2014) only considered random placement
of the influencing agents. However, in this work we consider
cases in which {p0(0), . . . , pk−1(0)} is under our control
(Section 7.2) and cases in which it is not (Section 7.3).

In the cases where {p0(0), . . . , pk−1(0)} is under
our control (Section 7.2) we may place the agents
{a0, . . . , ak−1} wherever we wish. However, in the cases
where {p0(0), . . . , pk−1(0)} is not under our control
(Section 7.3), we are constrained to have the agents
{a0, . . . , ak−1} begin in designated starting spots. These
agents may then attempt to join the flock at a later time, per-
haps as the flock passes by their spot.

3.3 Influencing Agent Control
Influencing agents {a0, . . . , ak−1} are agents whose behav-
ior we can control. Specifically, we control what type of be-
havior these agents display at each given time step: 1) con-
trol to adjust position or 2) control to influence neighbors.
Our previous work (Genter and Stone 2014) only focused
on control to influence neighbors. In this work, we add rea-
soning about control to adjust position in Section 6 and we
introduce a method to arbitrate between control to adjust po-
sition and control to influence neighbors.

3.4 Performance Representation and Objective
We define the Agent Control and Placement Problem
(ACAPP) as follows: Given a target orientation θ∗ and a
team of n agents {a0, . . . , an−1}, where the flocking agents
{ak, . . . an−1} have positions γm(t) = {pk(t), . . . pn−1(t)}



at time t and calculate their orientation based on Equa-
tion 1, determine placement π(0) of influencing agents
{a0, . . . ak−1} at time 0 and control φ(t) at time t >= 0
such that loss l(π(0) + φ(t)) is minimized.

A k-agent placement specifies the positions that each
influencing agent {a0, a1, . . . ak−1} will take at time
0. The k-agent placement is denoted by πk(0) =
{p0(0), . . . , pk−1(0)} where {p0(0), p1(0), . . . , pk−1(0)} is
the set of positions for influencing agents {a0, a1, . . . ak−1}
at time 0.

We denote t∗ as the time at which flock-
ing agents {ak, . . . , aN−1} are oriented such that
{θk(t∗), . . . , θN−1(t∗)} are all within ε of θ∗. How-
ever, in some cases this will never occur because some of
the m flocking agents may become permanently separated
from the flock — we say these agents are lost. An agent
ai is considered lost if there exists a subset m′ < m of
flocking agents with orientations equal to θ∗ for more than
200 time steps where ai is not in m′. At this point, t∗ is set
to the time step at which the subset m′ converged to θ∗. Let
γm′(t) denote the positions of the non-lost flocking agents

at time t. Let α =

∑
j∈γ

m′ (t) ‖j−γm′ (t)‖
m′ — in other words,

let α represent the average distance of the non-lost flocking
agents at time t from the center of the flock.

The loss l(π(0)+φ(t)) of a k-agent placement πk(0) and
control φ(t) is a weighted function of four terms:
• w1 is a weight that emphasizes the importance of min-

imizing the number of runs in which any agent is lost
(minimize runs in which m−m′ > 0)

• w2 is a weight that emphasizes the importance of mini-
mizing the number of lost agents (minimize m−m′)

• w3 is a weight that emphasizes the importance of mini-
mizing the number of time steps needed for convergence
(minimize t∗)

• w4 is a weight that emphasizes the importance of the flock
being compactly spaced at time t∗ (minimize α)

l(πk(0) + φk(t)) =w1p(m−m′ > 0) + w2m−m′+
w3t∗ + w4α

(2)

An optimal placement π∗(0)+φ(t) is one with minimal loss
l(π∗(0) + φ(t)).

In this work, we set w2 > w1 > w3 > w4. With
these preferences for w1, w2, w3, and w4 we select influ-
encing agent placements that generally lose the least num-
ber of agents on average but that also attempt to minimize
the chances of losing any agents.

3.5 Simulation Environment
We situate our research on flocking within the MASON sim-
ulator (Luke et al. 2005). This simulator encodes all the flock
dynamics as described in this section and we augment it to
compute the performance metric discussed in the previous
section. Each agent points and moves in the direction of its
current velocity vector.

Videos showing the simulator in action in both cases are
available on our web page3. Our experimental setup is de-
scribed in more detail in Section 7.1.

4 Control of the Influencing Agents
Birds in a flock dynamically update their headings based on
the headings of their neighbors. In Section 3 we presented
the models that we expect birds to use when determining
which nearby birds are in their neighborhood and when up-
dating their headings. Our previous work has focused on
how randomly placed influencing agents should behave so
as to influence the flock to face a particular direction or
maneuver along a path (Genter, Agmon, and Stone 2013;
Genter and Stone 2014). We briefly review this work below.

Our first work in this area considered how influencing
agents should behave from a more theoretical approach
(Genter, Agmon, and Stone 2013). In this work we presented
a formal definition of our flocking model, which served as
a base for the model we use in our current work. We pre-
sented multiple general flocking theorems that apply across
all flocking scenarios before considering theorems specific
to cases in which all agents are stationary (vi = 0 ∀ i) and
cases in which only the influencing agents are non-stationary
(vi = 0 ∀ i ≥ k).

In our more recent work we considered how to influ-
ence a large, non-stationary flock to (1) quickly orient to-
wards a target orientation and (2) maneuver through turns
quickly but with minimal agents becoming lost as a result of
these turns (Genter and Stone 2014). We introduced a 1-step
lookahead algorithm for determining the individual behavior
of each influencing agent ai ∈ {a0, . . . , ak−1}. This 1-step
lookahead algorithm considered all of the influences on the
neighbors Ni(t) of the influencing agent ai and allowed the
influencing agent to determine the best orientation to adopt
(where best is defined as the behavior that exerts the most
influence on the next step). We used this algorithm to deter-
mine the behavior of each influencing agent in empirical ex-
periments, and showed that the 1-step lookahead algorithm
did better in terms of the number of steps required for the
flock to converge to θ∗ than the baseline algorithm in both
the orient case and the maneuver case.

In the current work presented in this paper, we use the 1-
step lookahead algorithm to determine the behavior of the
influencing agents that we add to the flock.

5 Determining the Initial Positions of
Influencing Agents

In previous work we considered how the influencing agents
that we added to random locations within a flock should be-
have. In the work presented in this paper, we instead con-
sider how to place the influencing agents {a0, . . . , ak−1}
into the flock. We consider two different cases when deter-
mining how to place ai ∈ {a0, . . . , ak−1} into the flock. In
the Drop case, we are able to drop each influencing agent
ai into the flock at whatever location pi(0) we desire at time
t = 0. In the Dispatch case, each influencing agent begins

3http://mipc15.blogspot.com/



at one of more stations outside the flock at time t = 0 and is
directed to travel to a particular location in the flock.

In the following subsections we discuss our approaches
for placing influencing agents into the flock. Videos of these
approaches are available on our web page4.

5.1 Random Placement
Our past research has randomly placed k influencing agents
within the dimensions of the flock (Genter and Stone 2014).
Hence, we use random placement as the base case for eval-
uating our other placement approaches.

5.2 Grid Placement
Grid placement is another base case in which we place k
influencing agents at predefined, well-spaced, gridded po-
sitions throughout flock. The placement of the influencing
agents is dependent on the space covered by the flocking
agents, and not on the positions of flocking agents. The
grid size is dependent on k. Grids are available that can
fit at most x influencing agents, where we use the small-
est grid in which k ≤ x. Grids are available in which
x ∈ {1, 2, 4, 9, 16, 25, 36, . . .}. For each grid size, agents
are spread out among the possible positions as much as pos-
sible.

5.3 Border Approach
Our border approach works by placing k influencing agents
as evenly as possible around the space covered by the flock-
ing agents. As in the grid placement approach, the placement
of the influencing agents is not dependent on the positions of
flocking agents. Instead, we place influencing agents on the
left side of the flock, right side of the flock, bottom of the
flock, and top of the flock in order until all k influencing
agents are placed. At most k4 influencing agents will be po-
sitioned on any particular side of the flock. If more than one
influencing agent is placed on a particular side of the flock,
the influencing agents spread out as much as possible on that
side of the flock.

5.4 Graph Approach
Our graph approach considers many possible k-sized sets of
positions in which the k influencing agents could be placed,
and then evaluates how well each of these sets connects the
m flocking agents with the k influencing agents.

Creating the Graph Before any influencing agents are
added to the graph, all {ak, . . . , aN−1} flocking agents
are added to graph G as nodes. For each agent ai ∈
{ak, . . . , aN−1}, an edge is added toG between ai and each
of its neighbors ab ∈ ni(t) if an edge does not already exist.

Calculating Sets of Influencing Agent Positions Next we
consider the positions at which we will consider adding in-
fluencing agents. For ai, aj ∈ {ak, . . . , aN−1}, we consider
adding an influencing agent at:

• the mid-point (xi(t)+xj(t)2 ,
yi(t)+yj(t)

2 ) between pi(t) and
pj(t) only if pi(t) and pj(t) are within 2r of each other

4http://mipc15.blogspot.com/

• (xi(t) + 0.1, yi(t) + 0.1) where r < 0.1

Once we have all of the positions at which we might add
an influencing agents, we create all possible k-sized sets of
these positions.

Evaluating Sets of Influencing Agent Positions Finally,
we take all possible k-sized sets and consider individually
each set S of k influencing agent positions. Hence we do the
following for each S:

• Add each influencing agent ai ∈ S to G

• For each agent ai ∈ S, an edge is added to G between ai
and each of its neighbors ab ∈ ni(t)

• Run the Floyd Warshall shortest paths algorithm on G to
obtain the following:

– numNoConn: the number of flocking agents not con-
nected to an influencing agent (directly or indirectly)

– numConn: the number of connections between flock-
ing agents and influencing agents (directly or indi-
rectly)

– numDirectConn: the number of direct connections be-
tween flocking agents and influencing agents

– numNoDirectConn: the number of flocking agents not
directly connected to an influencing agent

Once all possible k-sized sets S have been individually
considered, we select a set based on the information we ob-
tained. Specifically, we consider (1) minimal numNoConn,
(2) maximal numConn, (3) maximal numDirectConn, and
(4) minimal numNoDirectConn in order. If only one set
matches the description at a level, then we select it. Oth-
erwise, all of the sets that matched the description at that
level move onward to be considered at the next level. If mul-
tiple sets remain after the final level, we choose one of the
remaining sets randomly. In practice, we find that a set is
usually selected using the first criteria.

6 Determining the Control of Influencing
Agents

In the Drop case, the k influencing agents are at the desired
positions at t = 0, so they can start 1-step lookahead di-
rectly. In the Dispatch case, however, the influencing agents
are initialized outside of the flock. They would only influ-
ence a limited number of flocking agents if they start 1-step
lookahead immediately. Hence they need to reposition them-
selves to their desired positions before they attempt to influ-
ence the flocking agents’ orientations.

There are two issues we need to resolve for the Dispatch
case. First, the influencing agents need to approach and en-
ter the flock in order to influence more flocking agents. If
they travel at the same speed as the flocking agents, they
may not be able to catch up to the flocking agent. Instead,
as the orientations of the flocking agents are affected by the
influencing agents’ directions, the flocking agents are more
likely to be driven away. Therefore, we allow the influenc-
ing agents to travel faster than the flocking agents. Second,
as we described earlier, once an influencing agent ai reaches



its desired position pi(t), it enters the phase of 1-step looka-
head. However, 1-step lookahead may cause ai to leave its
desired position (it may even leave the flock). ai may wish
to return to the repositioning phase. However, if ai switches
between repositioning and influencing too frequently, it will
end up oscillating between these two behaviors and not effi-
ciently influence the flocking agents. Therefore, we employ
a hysteresis method to control the switch between these two
phases.

We use the initial positions in the Drop case as the desired
positions in the Dispatch case. We report the empirical re-
sults for random placement, grid placement and border ap-
proach as these approaches all run in constant time. As the
desired positions need to be evaluated at each time step in
the Dispatch case, we found the graph approach too com-
putationally expensive to be used in the Dispatch case.

7 Experiments
In this section we describe our experiments testing the vari-
ous approaches for placing influencing agents into a flock in
both the Drop case and the Dispatch case. We compare our
novel approaches against baseline methods in both cases.

7.1 Experimental Setup
We utilize the MASON simulator (Luke et al. 2005) for our
experiments in this paper. We introduced the MASON sim-
ulator in Section 3.5, but in this section we present the de-
tails of our experimental environment that are vital for com-
pletely understanding our experimental setup.

The experimental settings for variables are given in Table
1 for both the Drop case and the Dispatch case.

Variable Drop
Default

Dispatch
Default

toroidal domain no no
domain height 300 300
domain width 300 300
units moved by each flocking agent
per time step (vk = . . . = vN−1) 0.2 0.2
units moved by each influencing agent
per time step (v0 = . . . = vk−1) 0.2 0.2-1

number of agents in flock (n) 10-50 50
number of influencing agents (k) 1-5 5
neighborhood for each agent (radius) 10 10

Table 1: Experimental settings for variables in the Drop and
Dispatch cases. Italicized values are default settings for the
simulator.

Many of our experimental variables, such as toroidal do-
main, domain height, domain width, and the units each agent
moves per time step, are not set to the default settings for the
MASON simulator. We chose to remove the toroidal nature
of the domain in order to make the domain more realistic.
Hence, if an agent moves off of one edge of our domain,
it will not reappear. This is particularly important for lost
agents. We also increased the domain height and width, and
decreased the units each agent moves per time step, in or-
der to give agents a chance to converge with the flock before
leaving the viewable area.

Flocking agents are randomly placed initially within a
square in the top left of the domain, where this square occu-
pies 4% of the domain. Agents are assigned random head-
ings that are within 90 degrees of the initial θ∗. We conclude
that the flock has converged when every agent (that is not an
influencing agent or lost) is facing within 0.1 radians of θ∗.

In all of our experiments, we run 100 trials for each exper-
imental setting. We use the same 100 random seeds for each
set of experiments for the purpose of variance reduction. The
random seeds are used to determine the initial placement and
orientation of all of the flocking agents.

7.2 Drop Experimental Results
In the Drop case, we are able to drop each influencing agent
ai into the flock at whatever location pi(0) we desire at time
t = 0. There are many different metrics that can be used to
assess how ‘good’ a particular approach is — steps for the
flock to converge, the number of trials in which any flocking
agents were lost, the average number of flocking agents lost,
and the average distance of the flocking agents from the cen-
ter of flock at convergence are just some possible metrics. As
discussed in Section 3.4, in this work we primarily focus on
minimizing the average number of flocking agents lost. Our
secondary focus is minimizing the number of trials in which
any flocking agents are lost.

Figure 1 shows graphs that depict the average number
of flocking agents lost when n = 10 and when n = 20.
Note that the graph approach does better in comparison to
the other approaches when the flock size is small (n = 10)
because in these cases agents are more sparse in the environ-
ment and hence tend to have fewer neighbors. Additionally,
the graph approach also performs better than the other ap-
proaches when the percentage of influencing agents in the
flock is high. This is likely because the graph approach fo-
cuses on minimizing the number of unconnected flocking
agents, so as a higher percentage of the flock is composed
of influencing agents, the number of unconnected flocking
agents will decrease quicker under the graph approach than
under other approaches.

(a) n = 10 (b) n = 20

Figure 1: The average number of flocking agents lost. These
results are obtained over 100 runs.

Figure 2 shows how many trials out of 100 resulted in
any flocking agents becoming lost. All of the methods begin
to have more trials in which no flocking agents are lost as
the number of influencing agents increases. However, it is
notable how stark the difference is between the number of



trials in which no flocking agents are lost when using the
graph approach versus any other approach. This supports our
assertion that the graph approach places influencing agents
in initial positions that minimize the number of disconnected
flocking agents.

Figure 2: The number of trials (out of 100) in which any
flocking agent was lost when n = 10.

7.3 Dispatch Experimental Results
We initialize all the influencing agents at one corner of the
flock. They start by traveling to their desired positions, and
then do 1-step lookahead. We use a hysteresis method to
control the switching between repositioning and influencing.
Concretely, when an influencing agent reaches a distance of
α away from its desired position, it returns to its desired po-
sition within distance β, where α > β.

In Figure 3(a,b), we show a baseline case that the influenc-
ing agents are dispatched to random positions in the flock.
We can observe that without considering placing them in
the most influencing positions, the influencing agents end up
with the worst performance compared to the following ap-
proaches. However, this result is still comparable with other
approaches, as the influencing agents try to enter the flock,
even though the positions in the flock are chosen randomly.

We can see that faster speed of the influencing agents
yields better performance in general, as it reduces the in-
fluence on the flock when repositioning. On the contrary,
when the speed of the influencing agents is same as that of
the flocking agents, almost all of the flocking agents are lost.
Finally, we compare to purely 1-step lookahead (the left bar)
without positioning. It has a worse performance as the influ-
encing agents remain at one corner.

In Figure 3(c,d), the influencing agents are dispatched to
the border positions of the flock. This is slightly better than
the random case. Although in the Drop case, influencing
agents on the border can surround the flock, and thus reduce
the number of lost agents. In the Dispatch case, however,
this approach makes the influencing agents travel a longer
distance to reach their destinations before they can start 1-
step lookahead. This results in more flocking agents lost and
the flock less compact.

In Figure 3(e,f), the influencing agents are dispatched to
the grid positions. Compared to the border case, the grid po-
sition case shows a better performance. Same as the reason-
ing above, the influencing agents travel a shorter distance to
position themselves.

(a) Random, lost agents (b) Random, distance

(c) Border, lost agents (d) Border, distance

(e) Grid, lost agents (f) Grid, distance

Figure 3: The average number of lost agents (m = 45) and
the average distance to the center of the flock.

8 Conclusion
In this paper we consider where to place influencing agents
that we add to a flock comprised of agents which we have no
direct control over but that we wish to influence towards a
particular behavior. We presented multiple methodologies as
well as experimental results for placing influencing agents in
two cases: (1) where we initially place the agents anywhere
and (2) where the agents must travel to their desired posi-
tions after being initially placed outside the flock.

In future work we plan to also consider position adjust-
ment control in the case in which we can place the influenc-
ing agents initially. We also plan to design a more efficient
graph-based placement approach for the Dispatch case. Fi-
nally, it would be interesting to automatically determine the
best formation for the influencing agents based on the cur-
rent configuration of the flock.
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