Nonparametric Bayesian Learning of Other Agents’ Policies in Interactive
POMDPs

Alessandro Panella and Piotr Gmytrasiewicz
Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607

Abstract

We consider an autonomous agent facing a partially ob-
servable, stochastic, multiagent environment where the
unknown policies of other agents are represented as fi-
nite state controllers (FSCs). We show how an agent
can (i) learn the FSCs of the other agents, and (ii) ex-
ploit these models during interactions. To separate the
issues of off-line versus on-line learning we consider
here an off-line two-phase approach. During the first
phase the agent observes as the other player(s) are in-
teracting with the environment (the observations may
be imperfect and the learning agent is not taking part
in the interaction.) The collected data is used to learn
an ensemble of FSCs that explain the behavior of the
other agent(s) using a Bayesian non-parametric (BNP)
approach. We verify the quality of the learned models
during the second phase by allowing the agent to com-
pute its own optimal policy and interact with the ob-
served agent. The optimal policy for the learning agent
is obtained by solving an interactive POMDP in which
the states are augmented by the other agent(s)’ possi-
ble FSCs. The advantage of using the Bayesian non-
parametric approach in the first phase is that the com-
plexity (number of nodes) of the learned controllers is
not bounded a priori. Our two-phase approach is pre-
liminary and separates the learning using BNP from the
complexities of learning on-line while the other agent
may be modifying its policy (on-line approach is subject
of our future work.) We describe our implementation
and results in a multiagent Tiger domain. Our results
show that learning improves the agent’s performance,
which increases with the amount of data collected dur-
ing the learning phase.

Introduction

An autonomous, rational agent operating in a stochastic, par-
tially observable environment maximizes its expected util-
ity, usually the discounted sum of future rewards, as in
the case of partially observable Markov decision processes
(POMDP)(Russell and Norvig 2009; Kaelbling, Littman,
and Cassandra 1998). An additional layer of uncertainty in
multiagent environments is due to the actions of other agents
which affect the state of the world, and possibly our agent’s

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

payoff. To increase performance it is useful to predict the
actions of other agents. In this work, we consider an agent
that maintains explicit models of other agents.

Intentional models are specifications of the other agent’s
beliefs and preferences, which can be used to simulate their
decision making process. For instance, a POMDP-based
agent may consider the other agent(s) to be POMDP-based
themselves, maintain a probability distribution over their
POMDPs, and compute a solution to those models recur-
sively, as in the case of interactive POMDPs (I-POMDPs)
(Gmytrasiewicz and Doshi 2005). In general, this approach
involves maintaining a probability distribution over all pos-
sible agents’ specifications and beliefs. The resulting joint
probability space is very complex.

An alternative we pursue in this paper is to consider subin-
tentional models, which do not contain other agents’ pay-
offs and beliefs. A subintentional model can be as simple as
a static probability distribution over actions, or a mapping
from observations to actions. The representation we use here
is a variant of finite state controllers (FSCs), which provides
a good trade-off between complexity and expressive power
(Meuleau et al. 1999). We consider FSCs with determinis-
tic transitions between nodes triggered by observations from
the environment. Each node represents an internal state of
the modeled agent that summarizes its past history, and con-
tains a probabilistic mapping to the action space.

We consider a likely case in which the “protagonist” agent
1 is not given a finite set of possible models of the other agent
(7) but considers the set of all possible controllers. To han-
dle the fact that the size of the controllers is not bounded
a priori, we use Bayesian nonparametric methods (Hjort et
al. 2010). The crucial advantage of BNP is that it allows
agents to represent probability distributions over objects of
unbounded size, which is needed given the lack of bounds on
the size of other agent’s policy. In other words, BNP meth-
ods are flexible in that they allow for the learned represen-
tation to grow with the observed complexity of the data. In-
tuitively, we would like to learn a small FSC if it provides
a sufficient account for the observed behavior. If the behav-
ior is complex, however, we want to be able to learn a more
complex FSC. The problems we tackle are too complex to
be amenable to conjugate analysis (Kadane 2011) and we
use the computational implementations of Bayesian infer-
ence based on Dirichlet processes and Gibbs sampling tech-

niques (Hjort et al. 2010).

We view an on-line model-based Bayesian approach to
learning the most realistic and practical. On-line approach
assumes that the planning and learning are interleaved, with
the agent updating the learned models as it observes and
interacts with the other agent. The major complexity of an
on-line approach is that it may be unrealistic to assume that
the other agent’s policy remains constant during interaction.
To separate this issue from BNP learning itself in this pa-
per we take an off-line two-phase approach of batch learn-
ing. During the learning phase the agent (z) accumulates
its own observations which probabilistically depend on the
state of the world and the actions of the other agent(s) (7).
The agent then uses Bayesian nonparametric (BNP) tech-
niques described below to compute an ensemble of plausi-
ble FSCs which explain the observations and what is known
behavior of the other agent(s). As we mentioned the advan-
tage of BNP is that is does not impose an a priori bound on
the complexity of the behavior of the other agent. During the
second testing phase the agents interact and agent ¢ exploits
the learned models, while also adjusting the probabilities of
each of the FSCs in its ensemble based on incoming obser-
vations using the Bayes rule. We show how ¢ can improve its
performance during interactions by exploiting the informa-
tion it obtained during observation, depending on the length
of the observation phase. The online approach to interleav-
ing of the learning and exploitation phases, that provides the
capability to interact with adaptive agents (who themselves
may also learn,) is the subject of future work.

Our work is related to research on plan recognition (Char-
niak and Goldman 1993); and on goal-based POMDPs
(Ramirez and Geffner 2011). In game theory, determinis-
tic finite automata (DFA) have been employed to represent
strategies in the presence of bounded rationality (Rubinstein
1998) when the opponent’s actions are assumed observable.
(Carmel and Markovitch 1996) provides a heuristic for the
on-line inference of a consistent DFA, which does not guar-
antee any bound on the complexity of the learned model.
However, we do not use the classical game-theoretic solu-
tion concept of a Nash equilibrium, building on the grow-
ing body of work that uses the decision-theoretic solution
concept (Oliehoek and Amato 2014) and behavioral game
theory (Wright and Leyton-Brown 2012).

BNP learning techniques have been employed in the con-
text of partially observable policy-based (Liu, Liao, and
Carin 2011) and model-based (Doshi-Velez et al. 2010;
2013) reinforcement learning (RL). The difference between
that work and ours is that we focus on learning explicit
model of the other agent and assume that the transition and
reward models (for agent ¢) are known. In particular, the re-
ward signal is not perceived by agent ¢ at each time step
during execution. While it is possible to fold the informa-
tion about the other agent’s actions and how they change
the physical state into the transition model, doing so would
treat the other agent as a constant noise factor. This would
preclude more nuanced coordination based on tracking its
policy.

The remainder of this paper is organized as follows.
Section provides background on POMDP and FSC con-

cepts. Section describes the BNP learning model and the
sampling-based inference algorithm. Section explains how
the learned models are used for planning optimally, and ex-
perimental results are provided in Section . Section con-
cludes the paper and charts directions for future work.

Background: POMDPs and Finite State
Controllers

A Partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) is a general model
for planning and acting in partially observable, stochastic
domains. It is a tuple P = (S, 4,Q,T,0, R), where: S
is the set of possible states of the world; A is the set of
agent’s actions; {2 is the set of observations the agent can
receive; T : S x A x S — [0,1] is the state transition
function; O : A x S x Q@ — [0,1] is the observation
function; R : S x A — R is the reward function. Fre-
quently, an optimal POMDP policy can be represented as
a deterministic finite state controller. Some solution meth-
ods compute POMDP policies by performing a search di-
rectly in the space of FSCs (Hansen 1998), or search in the
more general space of stochastic FSCs (Meuleau et al. 1999;
Poupart and Boutilier 2003).

We use a version of FSCs called probabilistic determinis-
tic finite controllers (PDFC) to model other agent(s) policies.
In PDFCs the transitions between the memory states (nodes)
are deterministic but the actions are chosen stochastically in
each state of the controller. The actions are stochastic in or-
der to enable more efficient search through the space of all
models. Formally, a PDFC is a tuple ¢ = (Q, A, Q, 7, 0, qo),
where: (2 is the set of observations of the agent; A is the set
of actions the agent can execute; (is the set of nodes, the in-
ternal states of the agent; 7 :) X 2 — @ is the deterministic
node transition function; 6 : Q — A(A) is the probabilistic
emission function; qq is the initial node.

Bayesian Nonparametric Learning of Finite
State Controllers
Description of The Model

In this paper, we propose a Bayesian methodology to learn
over a class C of finite state controllers which implement
agent j’s policy, given a sequence of observations of agent ¢
wt - of length T'. We wish to infer the posterior distribution
over all possible models ¢ € C'. Formally, we have:

p(cwi.r) < p(wi.rlc)p(c), (1)
where p(w?.|c) is the likelihood of the observed data given
the model, and p(c) is the prior distribution over the space
C of PDFCs.

Our learning task is equivalent to performing inference
in a dynamic Bayesian network such as the one in Figure
1, where the nodes g1.7 represent the sequence of internal
nodes of the finite controller, a.7 are the actions generated
in such nodes, and w7, . are the observations received by the
modeled agent j. As we mentioned, the transitions between
nodes are deterministic and represented by a transition func-
tion 7, depending on the previous node and the current ob-
servation, while the actions are stochastically dependent on

-0 @] @7% ol
- [/@ ! /@?
S N

N
i i iy

4 ef

Figure 1: Bayesian model for PDFC learning.

the current node of the controller, i.e.

qr = TQt—le (2)

az ~ 9qt.

Following the hierarchical Bayesian approach to learn-
ing graphical models (Koller and Friedman 2009), we treat
the transition and emission functions as stochastic variables.
Since we do not know a priori the number of nodes |Q| in
the controller, we place a stick-breaking prior distribution
(GEM) parameterized by « (Sethuraman 1994) on the val-
ues of 7 for each node-observation pair (for brevity we write
Tin, instead of 74, | ,,, below):

7 ~ GEM(a)

Vk=1,2,...
Vh=1,...,iQ -

3)

Tkh ~ T

The stick-breaking distribution GEM serves to provide a
prior over the size of PDFCs. It does so by dividing the unit
range [0, 1] into an infinite number of intervals (as in repeat-
edly breaking a stick) defining variable 7 = {m;,}?2, as an
infinite discrete probability vector over the potentially infi-
nite number of nodes of a PDFC. The “concentration param-
eter” « affects the values of consecutive 7 which decay ex-
ponentially with k: smaller values of « favor a steeper decay,
resulting in fewer nodes of the PDFC each with more incom-
ing transitions 7. Conversely, larger values of « place a
bias towards a more uniform 7, hence favoring PDFCs with
more nodes.

The actions generated in each node are sampled from
a probability vector 05 and therefore follow a multino-
mial distribution. We place a Dirichlet distribution as hi-
erarchical prior over these parameters to exploit its con-
jugacy in the model. We use symmetric Dirichlet distri-
butions over the simplex defined by the action set, i.e.
Oy ~ Dir|a)(A) = Dir (.- -+ 1a7)-

Inference Via Gibbs Sampling

By exploiting the stick-breaking construction to implement
Equation 1, we build a collapsed Gibbs sampler to estimate
the posterior distribution over PDFCs, whose pseudocode is
shown in Algorithm 1, that repeatedly samples each vari-
able given the current values of all the other variables in the
model. We note that variables 7 and 6},’s are not being sam-
pled directly, since they are integrated out analytically. In the

remainder of this section, we define the conditional distribu-
tions that are used during each step of the Gibbs sampler.
Also the nodes ¢;.7 are not sampled since they are uniquely
determined by the values of the other variables.

Sampling the transition function (Algorithm 1, line
10). Given the value of the other variables, the probability
of 7 for each node and observation pair is:

(T |0 T (khys W1y G1:7) @

o P(Tenle, T—(kny) Plavr|T,w].p),
where 7_ 15,y denotes all current values of 7 except the one
being sampled (so that 7 = 7¢p, U T_(x)). The first term on
the right-hand side of this equation can be derived from the
properties of the so-called Chinese restaurant process (Hjort
et al. 2010), that allows to sample 7 from the stick-breaking
distribution directly, without explicitly representing the vec-
tor 7. Let us denote as v; the count of how many times an
existing node ¢ happens to be the destination node of any
transition in 7_xp); we have:

p(Tkn = i|la,v) xv; for existing node ¢ 5)

p(Trn = ia,v) < o for new node i.

We note here that new nodes can be generated while sam-
pling 7, and the probability of sampling a new node is pro-
portional to «, the concentration parameter of the Dirichlet
process underlying this sampling schema. As discussed in
the previous section, larger o values promote the genera-
tion of new nodes. Moreover, the probability of generating
a new node decays as the set of nodes grows, so to define a
proper prior distribution over the number of nodes. The sec-
ond term on the right-hand side of Equation 4 can be com-
puted by considering that 7 and w{ ;. jointly determine the
values of the node sequence. Let us introduce a count ma-
trix d, where each element dy, represents how many times
action y is generated in node k in such sequence. If the cur-
rent number of node in 7 is K, and given that each action
is conditionally independent, we can use the properties of
the Dirichlet-multinomial model (Gelman et al. 2003), and
marginalize over the parameters 6} ’s, to obtain:

K |A]|

: I'(\) [(dyy + A/]A])
arr|T,wlp) = Y
slerinetn) = 11 w5y L=t
(6)
The quantity dg. is the number of times node k is visited, i.e.

dy. = 2!7;4:'1 dky'

Sampling the observation sequence (Algorithm 1, line
13). To estimate a posterior distribution over PDFCs, we
also need to sample the observation sequence wj ., of the
modeled agent j. Given all the other variables, we can sam-
ple w{_ . by using a variation of the forward-backward algo-
rithm for hidden Markov models (Rabiner 1989). From the
structure of the graphical model, we can infer that the prob-
ability of each observation is:

sz,a,., 1, T
p(t|t t—1:T>qt—1))

08 p(wz |at—1, St)p(at:T|Qt—1a wf, 7')-

Algorithm 1 Gibbs sampler for PDFC learning.

1: K+1

Tiwi ¢ 1 Vwi € QJ

S1.T ~ p(SI:T|W1:T)

ar.r ~ plarr|wir, s1T)

w{;T ~ p(a1:T|W§;T7 S1.T, al:T)

for n = 1..N;ze, do
po « rand-perm(1..K)
pq < rand-perm(1..|Q|)
9: for k in pg, h in pg do

®RD

10: Sample 75 ~ p(Tkn |, T—(kh)s w{:T, a1.7)
11: end for 4

12: Sample wi, ;- ~ p(wi.r|s1.T, arr, qur, 7’)

13 Sample si.r ~ p(su.r|siT, arr, wi g, wip)
14: Sample a1.7 ~ p(ay.7|qi7r, W1 Wi, S1:T)
15: end for

> Initialize number of nodes to 1

> Initialize all transitions from the only node to itself
> Initialize sequence of states of the world,

j’s actions,

and j’s observations

> Niter IS the number of iterations of the Gibbs sampler
> Permute nodes and observations to
sample transitions in random order to avoid bias

> Sample the sequences of j’s observations,
states of the world,
and j’s actions

The first term is the observation function of the modeled
agent, while the second term can be computed efficiently
through a backward probability message (we omit the de-
tails here for brevity.)

Note that the assumption that the observation function
of the modeled agent is known can be relaxed. If this ob-
servation function is not known the modeling agent has to
marginalize over every possible value of this function. To do
this, we could use hierarchical modeling approach and intro-
duce a variables v, which, for each world state s and action
a, denote the probabilities of j’s observations. We could then
place a Dirichlet prior over these quantities.

Sampling the state and action sequences (Algorithm 1,
lines 13, 14). The modeling agent ¢ does not perceive di-
rectly the sequence of world states and actions of agent 7,
and only perceives the environment through its own obser-
vation model p(w{|a;_1, s¢), where the observations belong
to a set ¢, which of course does not have to be identical to
the modeled agent j.

Therefore, in the Gibbs sampler, we sample s.7 and a1.1
given the values of the other variables. The world state at
each time step can be sampled from

p(Se|st—1, r—1.1, wi}T, W?;T) 8)

o8 p(3t|5t—17 at—l)p(wi:T> Wz;T|5t, Gt—l),

where the first term on the right-hand side is the environ-
ment’s transition model, that we assume both agents know,
and the second term can be efficiently computed using a
backward probability message. The sequence of actions can
be sampled from

p(at ‘q?ﬁ w§+1) wg+17 St 3t+1)
o< p(at|qe)p(se+1lar, St)P(Wz}u W§+1 |ag, St41)-

Interactive POMDPs

As in the interactive POMDP framework (Gmytrasiewicz
and Doshi 2005), we extend the definition of POMDP to

€))

multiagent settings by defining a tuple
Py = (8;,A,9,T,0;, R;),

where A is the set of joint actions a = (a;, a—_;) and the tran-
sition function 7" describes how the world evolves as an ef-
fect of joint actions; similarly, O; and R; specify how agent
1 receives observation and rewards, depending on the state
and the joint action performed. The “interactive state space”
S; =8 x M_j; is the cross product of the physical state and
the set of possible models of other agent(s), each of which
is a tuple m; = (hj, f;,0;), where f; : H; — A(A;) is
an agent function mapping observation histories to distribu-
tions over actions, and h; is a particular observation history.
Here, we consider models where the agent function is imple-
mented by a PDFC ¢; € C; and the history of observations
is replaced by the internal state g;, i.e. m; = (g;,¢;,0;).
Note that, with respect to the more general [-POMDP case,
we only consider a class of subintentional models for other
agents (i.e. their reward function is not explicitly modeled.)
However, this formalization maintains the perspective of an
autonomous agent during planning and execution, assum-
ing that the features of other agents are not known and
observable, unlike the case partially observable stochastic
games (POSG) (Hansen, Bernstein, and Zilberstein 2004).
Our model is closer to the best-response model (BRM) de-
fined in (Oliehoek and Amato 2014).

In the following, we focus on the formalization which in-
cludes one other agent j, but the N-agents generalization
is straightforward. An element of S; is therefore a tuple
5 = (s,qj,¢j,0;). We assume that the PDFCs of the other
agent does not change during execution, and that the obser-
vation model of the other agent O; is known. Moreover, we
consider a finite set of PDFCs C} (it will be the finite en-
semble of models obtained during the learning phase.) The
belief update function returns the probability of an interac-
tive state when action a; is executed and observation w; is
received, given the previous belief over .S;. The formula can
be derived as in I-POMDPs, by considering agent 7’s predic-

Figure 2: Two-slice dynamic Bayesian network representing
the interactive state transition in an [-POMDP with subin-
tentional models.

tion over j’s action, as follows:
p(5'|b, a;,w;) =

B Z E(E)Zp(aﬂ%acj) Oi(as, a5, ,w;)

5: c_jzc;.
x T(s,a;,a;,s") Z Oj(ai, a;,8',w;) p(djla;, cj,w;),
Wi

(10)
where (8 is a normalization constant, and p(a,|g;,c;) and
p(q}lgy, cj,w;) are derived from the components ¢ and 7
of PDFC c¢;. The value function is defined similarly to
POMDPs, and its property of piece wise linearity and con-
vexity carries over from the single-agent POMDP case
(Gmytrasiewicz and Doshi 2005).

Standard POMDP algorithms can be adapted to solve
subintentional I-POMDPs as the one described since there
is no nested intentional beliefs. Moreover, the interactive
state space .S; can be factorized into individual random vari-
ables, so that solving methods can be devised that do not
work on the full joint state space. In this paper, we adopt
Symbolic Perseus (Poupart 2005), which is a point-based
approximation algorithm that exploits state factorization by
representing the POMDP as a dynamic Bayesian network,
and context-specific independence by using algebraic deci-
sion diagrams to represent the conditional probabilities as
depicted in Figure 2.

Experiments

We report the experimental results involving agent ¢ observ-
ing an agent, j, acting in three different instances of the
Tiger Problem (Kaelbling, Littman, and Cassandra 1998),
with three different hearing accuracies of 0.96, 0.85 and 0.8.
In each case we assume that the modeled agent j acts ac-
cording to the exact optimal solution of its POMDP. These
solutions can be represented as deterministic finite state con-
trollers containing 3, 5, and 7 nodes for each of the hearing
accuracies above. They are depicted in Figure 4. We assume
that the modeling agent ¢ hears a growl (GL and GR) from
the correct door (one with the tiger) with 0.85 accuracy. Ad-
ditionally, if agent j opens a door, ¢ hears a creak (CL or CR)
coming from the door being opened with probability 0.9, a
creak from the other direction with probability 0.05, and si-

TIGER 0.85 TIGER 0.80

TIGER 0.96
GL GR GL GR
GR GL e 2
* K GR GL GR/ *aL * * GL\\\ GR
® @ @ o) (om)et

Figure 4: Diagrams of the POMDP policies generating the
data.

lence (S) with probability 0.05. If j does not open any doors
¢ hears a silence with probability 0.9 and CL and CR with
probabilities 0.05 each.

In order to fully specify a prior distribution over the space
of PDFCs, we have to pick some values for the parame-
ters of the models. We use A = 0.1|A| as the parameter of
the Dirichlet prior over the probabilities, 65, which govern
the selection of actions from set A = {Listen, OpenLeft,
OpenRight} (henceforth designated as L, OL and OR.) The
prior distribution over the number of nodes of the learned
PDFCs is parameterized by quantity « via the stick break-
ing construction (Antoniak 1974). In order to make the
learning process more flexible we place a hierarchical prior
Gamma(1, 0.1) over « itself (this is not depicted in Figure 1
above.)

During the interaction phase both agents can open doors
or listen. Any opening of the doors resets the location of the
agent, so agent ¢ has to use the information it has from the
learning phase, as well as from creaks during interactions, to
align its own behavior with the expected behavior of agent
j. For each value of Tj,r, We ran 40 leaning trials each
resulting in an ensemble of PDFCs for agent j, by running
the Gibbs sampler for 100 iterations. From this ensemble we
picked the set of four most likely (a posteriori) PDFCs and
as the set |C;| of models of agent j in agent i’s I-POMDP.
The solution of this -POMDP was then ran 100 times (for
50-step interaction sequences each.) The standard deviation
bars in Figure 3 are fairly wide due to occasional high mag-
nitude payoffs of -100 when the agent 7 encounters the tiger.
The full horizontal lines in the figures mark the performance
of the optimal policy of agent ¢ when full knowledge of the
FSC of the agent j, and the dashed lines represent the stan-
dard deviation of the rewards obtained in such ideal case.

For each value of the hearing accuracy of agent 5 (and the
corresponding deterministic finite state controllers contain-
ing 3, 5 and 7 nodes, respectively,) we show how the perfor-
mance of agent ¢ during a 50-step long interaction phase de-
pends of the length of the observation sequence 7jcq,,- They
are depicted in Figure 3. We see that the increased length of
the observation phase allows agent 7 to learn better quality
models of agent j and, in general, increase its reward dur-
ing the subsequent interactions. Note also that the increase
of the accumulated reward due to learning better models of
J shows up later (after a greater number of observations) for
more complex models. This makes sense and shows that it
takes more observations to learn a useful model if the behav-
ior is generated by a more complex policy.

Let us look at some special cases. The optimal policy of

: TIGER (0.96) - 3 state FSC

25

j: TIGER (0.85) -

5 state FSC j: TIGER (0.80) - 7 state FSC

s
S

w
&

~
20 —~—

w
S

@

n
N
o

N
S

Acc. Reward

Ace. Reward

o

=)

. R L s
64 128 256 512 2 4 8

Acc. Reward

L L L |
64 128 256 512 2 4 8 32

Ticam

64 128 256 512

Figure 3: Mean reward over 50 steps for three different policies of agent j. The vertical bars represent the standard deviation.

Figure 5: I-POMDP optimal policies, computed after learn-
ing from very few observations (left), and given a se-
quence of 256 observations (right.) The ‘x’ symbol repre-
sents “don’t care’s”.

agent ¢ for small values of 7.4, is depicted in Figure 5-
left. This policy does not rely on the learned model of agent
7, which is non-informative anyway, and instead relies on
the information contained in the creaks. It uses the absence
of creaks to wait for a sequence of two interactions during
which 7 can listen and hope for two consistent growls which
give it enough confidence to open the opposite door. Note
that ¢ gets an informative growl immediately after j’s open-
ing of the door; the direction of the growl informs ¢ about the
tiger’s position after the reset. The performance of this opti-
mal policy is modest, since it does not include much useful
information from the learning phase.

Let us contrast the above with ¢’s optimal policy after
a long observation sequence (7jcqrn, Was close to 256) of
agent j equipped with quite accurate hearing and using the
3-nodes FSC depicted in Figure 4. Agent ¢’s optimal policy
is depicted in Figure 5-right. Here 7 was able to closely ap-
proximate the real policy of j and align its own policy to
maximize its own reward. Note that the creaks are irrelevant
now because ¢ knows that j alternates listening and open-
ing of the doors. Its own policy aligns its listening actions
to hope to get two consistent growls from the same physical
state when j also listens and does not reset the tiger.

Figure 6 reports timing results. The plots depict the aver-
age time measured across the simulations described above.
As expected, the time required by learning grows with the
length of the training sequence. Moreover, the charts show

Learning Planning

200 80 - —-
j: TIGER (0.96) 70 j: TIGER (0.96)
- = - j: TIGER (0.85) - = = j: TIGER (0.85)
150((...viv j: TIGER (0.80) 607 j: TIGER (0.80)

4 50
g 40
=

& 30
50

0,
2 4 8 16 32 64 128 256 512 2 4 8

Ticam

16 32

Ticam

64 128 256 512

Figure 6: Timing results for learning and planning.

that it takes slightly longer to learn more complex models;
this is explained by the fact that the size K of the controller
being learned has an impact on the running time, due to the
inner loop in Algorithm 1. The time spent for planning also
grows with the size of the observation sequence, albeit the
growth is less pronounced. This increase in planning time
is due to the fact that the PDFCs tend to have more nodes
when learned from longer observation sequences and for
more complex models, and therefore the planning algorithm
has to deal with a larger probability space.

Conclusions and Future Work

We described an approach to learning subintentional mod-
els of an agent based on imperfect observations. The mod-
els we use are probabilistic deterministic finite controllers.
We avoid a priori assumptions about the complexity of the
learned model by using hierarchical Bayesian nonparametric
approach to learning. Our implementation uses Gibbs sam-
pling methods. The results are intuitive: The learned models
are able to recover the complexity of the policies the other
agent uses if the learning can use sufficient amount of ob-
servations. If the training data is sparse the learning is less
informative and the quality of interaction is lower, but still
optimal given the data.

Our future work will concentrate to enabling the model-
ing agent to interleave on-line learning and interactions. This
leads to the challenging case of both agents possibly learn-
ing while interacting, discussed for example in (Shoham and
Leyton-Brown 2008).

References

Antoniak, C. E. 1974. Mixtures of Dirichlet processes with
applications to Bayesian nonparametric problems. The An-
nals of Statistics 2(6):1152—-1174.

Carmel, D., and Markovitch, S. 1996. Learning models
of intelligent agents. In Proceedings of the 13th National
Conference on Artificial intelligence, 62—67.

Charniak, E., and Goldman, R. P. 1993. A Bayesian model
of plan recognition. Artificial Intelligence 64(1):53-79.

Doshi-Velez, F.; Wingate, D.; Roy, N.; and Tenenbaum, J.
2010. Nonparametric Bayesian policy priors for reinforce-

ment learning. In Advances in Neural Information Process-
ing Systems 23, 532-540.

Doshi-Velez, F.; Pfau, D.; Wood, F.; and Roy, N. 2013.
Bayesian nonparametric methods for partially-observable
reinforcement learning. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 99(PrePrints): 1.

Gelman, A.; Carlin, J. B.; Stern, H. S.; and Rubin, D. B.
2003. Bayesian Data Analysis, Second Edition. Chapman
and Hall/CRC, 2 edition edition.

Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework
for sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research 24(1):49-79.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence, 709-715.

Hansen, E. 1998. Solving POMDPs by searching in policy
space. In Proceedings of the 14th International Conference
on Uncertainty In Artificial Intelligence, 211-219.

Hjort, N. L.; Holmes, C.; Miiller, P.; and Walker, S. G., eds.
2010. Bayesian Nonparametrics. Cambridge University
Press.

Kadane, J. B. 2011. Principles of Uncertainty. Chapman
and Hall/CRC, 1st edition.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101:99-134.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. The MIT Press.

Liu, M.; Liao, X.; and Carin, L. 2011. The infinite region-
alized policy representation. In Getoor, L., and Scheffer, T.,
eds., Proceedings of the 28th International Conference on
Machine Learning, 769-776.

Meuleau, N.; Peshkin, L.; Kim, K.-e.; and Kaelbling, L. P.
1999. Learning finite-state controllers for partially observ-
able environments. In Proceedings of the 15th International
Conference on Uncertainty In Artificial Intelligence, 427—
436.

Oliehoek, F. A., and Amato, C. 2014. Best response
bayesian reinforcement learning for multiagent systems with
state uncertainty. In AAMAS Workshop on Multiagent Se-
quential Decision Making Under Uncertainty.

Poupart, P., and Boutilier, C. 2003. Bounded finite state

controllers. In Advances in Neural Information Processing
Systems 16.

Poupart, P. 2005. Exploiting Structure to Efficiently Solve
Large Scale Partially Observable Markov Decision Pro-
cesses. Ph.D. Dissertation, University of Toronto, Toronto,
Ont., Canada, Canada. AAINRO02727.

Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. In Proceed-
ings of the IEEE, 257-286.

Ramirez, M., and Geffner, H. 2011. Goal recognition over
POMDPs: inferring the intention of a POMDP agent. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 2009-2014.

Rubinstein, A. 1998. Modeling Bounded Rationality. MIT
Press.

Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach (3rd Edition). Prentice Hall, 3rd edition
edition.

Sethuraman, J. 1994. A constructive definition of Dirichlet
priors. Statistica Sinica 4:639-650.

Shoham, Y., and Leyton-Brown, K. 2008. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. New York, NY, USA: Cambridge University Press.

Wright, J. R., and Leyton-Brown, K. 2012. Behavioral
game theoretic models: a bayesian framework for parame-
ter analysis. In International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2012, Valencia,
Spain, June 4-8, 2012 (3 Volumes), 921-930.

