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Abstract

As robots evolve into fully autonomous agents, settings
involving human-robot teams will evolve into human-
robot societies, where multiple independent agents and
teams, both humans and robots, coexist and work in
harmony. Given such a scenario, the question we ask
is - How can two or more such agents dynamically
form coalitions or teams for mutual benefit with min-
imal prior coordination? In this work, we provide a
game theoretic solution to address this problem. We will
first look at a situation with full information, provide ap-
proximations to compute the extensive form game more
efficiently, and then extend the formulation to account
for scenarios when the human is not totally confident of
its potential partner’s intentions. Finally we will look at
possible extensions of the game, that can capture differ-
ent aspects of decision making with respect to ad-hoc
coalition formation in human-robot societies.

Robots are increasingly becoming capable of performing
daily tasks with accuracy and reliability, and are thus get-
ting integrated into different fields of work that were until
now traditionally limited to humans only. This has made the
dream of human-robot cohabitation a not so distant reality.
In this work we envisage such an environment where hu-
mans and robots participate autonomously (possibly with re-
quired interactions) with their own set of tasks to achieve. It
has been argued (Chakraborti et al. 2016) that interactions
in such situations are inherently different from those stud-
ied in traditional human-robot teams. One typical aspect of
such interactions is the lack of prior coordination or shared
information, due to the absence of an explicit team.

This brings us to the problem we intend to address in this
paper - given a set of tasks to achieve, how can an agent pro-
ceed to select which one to achieve? In a shared environment
such as the one we described, this problem cannot be sim-
ply solved by picking the goal with the highest individual
utility, because the utility, and sometimes even the success
of the plan (and hence the corresponding goal) of an agent
are contingent on the intentions of the other agents around
it. However, such interactions are not adversarial - it is just
that the environment is shared among self-interested agents.
Thus, an agent may choose to form an ad-hoc team with an-
other agent in order to increase its utility, and such coalition
formation should preferably be feasible with minimum prior

coordination. For example, a human with a goal to deliver
two items to two different locations may team up with a de-
livery robot that can accomplish half of his task. Further, if
the robot was itself going to be headed in one of those direc-
tions, then it is in the interest of both these agents to form
this coalition. However, if the robot’s plan becomes too ex-
pensive as a result, it might decide that there is not enough
incentive to form this coalition. Moreover, as we highlighted
before, possible interactions between agents are not just re-
stricted to cooperative scenarios only - the plans of one agent
can make the other agent’s plans fail, and it may happen that
it is not feasible at all for all agents to achieve their respec-
tive goals. Thus there are many possible modes of interac-
tion between such agents, some cooperative and some de-
structive, that needs to be accounted for before the agents
can decide on their best course of action - both in terms of
which goal to choose and how to achieve it.

In this paper we model this problem of optimal goal se-
lection as a two player game with perfect information, and
propose to cut down on the prior coordination of forming
such ad-hoc coalitions by looking for Nash equilibriums or
socially optimal solutions (because neither agent participat-
ing in such a coalition would have incentive to deviate). We
subsequently extend it to a Bayesian game to account for sit-
uations when agents are not sure of each other’s intent. We
will also look at properties, approximations, and interesting
caveats of these games, and motivate several extensions that
can capture a wide variety of ad-hoc interactions.

1 Related Work
There is a huge variety of work that looks at team forma-
tion from different angles. The scope of our discussion has
close ties with concepts of required cooperation and capabil-
ities of teams to solve general planning problems, introduced
in (Zhang and Kambhampati 2014), and work on team for-
mation mechanisms and properties of teams (Shoham and
Tennenholtz 1992; Tambe 1997). However, in this particular
work, we are more interested in the mechanism of choosing
goals that can lend to possible cooperative interactions, as
opposed to the mechanism of team design based on the goals
themselves. Thus the work of Zhang and Kambhampati can
provide interesting heuristics towards cutting down on the
computation of the extensive form game we will propose,
while existing work on different modes of team formation



contribute to the motivation of the Bayesian formulation of
the game discussed in later sections.

From the game theoretic point of view, coalition forma-
tion has been a subject of intense study (Ray and Vohra
2014) and the human-robot interaction community can de-
rive significant insights from it. Of particular interest are
Overlapping Coalition Formation or OCF Games (Zick,
Chalkiadakis, and Elkind 2012; Zick and Elkind 2014),
which look at a cooperative game where the players are en-
dowed with resources, with provisions for the players to dis-
play different modes of coalitions based on how they utilize
the resources. OCF games use arbitration functions that de-
cide the payoffs for the deviating players based on how it
is affecting the non-deviating players and it helps in form-
ing stable coalitions. This becomes increasingly relevant in
shared environments such as the one we discuss here. Fi-
nally, an interesting problem that can often occur is such
situations (especially with the way we have formulated the
game in the human’s favor) is the problem of free-riding
where agents take advantage of coalitions and try to min-
imize their effort (Ackerman and Brânzei 2014), which is
certainly an important aspect of designing such games.

2 Preliminaries
2.1 Environment and Agent Models
Definition 1.0 The environment is defined as a tuple
E = 〈F,O,Φ,G,Λ〉, where F is a set of first order pred-
icates that describes the environment, and O is the set of
objects, Φ ⊆ O is the set of agents (which may be humans
or robots), G = {g | g ⊆ FO} 1 is the set of goals that these
agents are tasked with, and Λ ⊆ O is the set of resources.
Each goal has a reward R(g) ∈ R+ associated with it.

We use PDDL (Mcdermott et al. 1998) style agent models
for the rest of the discussion, but most of the analysis eas-
ily generalizes to other modes of representation. The domain
model Dφ of an agent φ ∈ Φ is defined as Dφ = 〈FO, Aφ〉,
where Aφ is a set of operators available to the agent. The
action models a ∈ Aφ are represented as a = 〈Ca,Pa,Ea〉
where Ca is the cost of the action, Pa ⊆ FO is the list of
pre-conditions that must hold for the action a to be appli-
cable in a particular state S ⊆ FO of the environment; and
Ea = 〈eff+(a), eff−(a)〉, eff±(a) ⊆ FO is a tuple that
contains the add and delete effects of applying the action
to a state. The transition function δ(·) determines the next
state after the application of action a in state S as δ(a, S) |=
⊥ if Pa 6⊆ S; |= (S \ eff−(a)) ∪ eff+(a) otherwise.

A planning problem for the agent φ is given by the tuple
Πφ = 〈FO, Dφ, Iφ,Gφ〉, where Iφ,Gφ ⊆ FO are the ini-
tial and goal states respectively. The solution to the planning
problem is an ordered sequence of actions or plan given by
πφ = 〈a1, a2, . . . , a|πφ|〉, ai ∈ Aφ such that δ(πφ, Iφ) |=
Gφ, where the cumulative transition function is given by
δ(π, s) = δ(〈a2, a3, . . . , a|π|〉, δ(a1, s)). The cost of the
plan is given by C(πφ) =

∑
a∈πφ Ca and the optimal plan

π∗φ is such that C(π∗φ) ≤ C(πφ) ∀πφ with δ(πφ, Iφ) |= Gφ.

1SO is any S ⊆ F instantiated / grounded with objects from O.

2.2 Representation of Human-Robot Coalitions
We will represent coalitions of such agents by means of a
super-agent transformation (Chakraborti et al. 2015a) on a
set of agents that combines the capabilities of one or more
agents to perform complex tasks that a single agent might
not be capable of doing. Note that this does not preclude
joint actions among agents, because some actions that need
that need more than one agent (as required in the precondi-
tions) will only be doable in the composite domain.

Definition 1.1 A super-agent is a tuple Θ = 〈θ,Dθ〉 where
θ ⊆ Φ is a set of agents in the environment E , and Dθ is
the transformation from the individual domain models to a
composite domain model given by Dθ = 〈FO,

⋃
φ∈θ Aφ〉.

Definition 1.2 The planning problem of a super-agent Θ
is given by ΠΘ = 〈FO, Dθ, Iθ,Gθ〉 where the composite
initial and goal states are given by Iθ =

⋃
φ∈θ Iφ and

Gθ =
⋃
φ∈θ Gφ respectively. The solution to the planning

problem is a composite plan πθ = 〈µ1, µ2, . . . , µ|πθ|〉 where
µi = {a1, . . . , a|θ|}, µ(φ) = a ∈ Aφ ∀µ ∈ πθ such
that δ′(Iθ, πθ) |= Gθ, where the modified transition func-
tion δ′(µ, s) = (s \

⋃
a∈µ eff−(a)) ∪

⋃
a∈µ eff+(a). The

cost of a composite plan is C(πθ) =
∑
µ∈πθ

∑
a∈µ Ca and

π∗θ is optimal if C(π∗θ) ≤ C(πθ)∀πθ with δ′(Iθ, πθ) |= Gθ.
The composite plan can be viewed as a union of plans con-
tributed by each agent φ ∈ θ whose component can be writ-
ten as πθ(φ) = 〈a1, a2, . . . , an〉, ai = µi(φ) ∀ µi ∈ πθ.

2.3 The Use Case
Throughout the rest of the discussion we will use the set-
ting from Talamadupula et al. which involves a human com-
mander CommX and a robot in a typical Urban Search and
Rescue (USAR) scenario, as illustrated in Figure 1. The en-
vironment consists of interconnected rooms and hallways,
which the agents can navigate and search. The commander
can perform triage in certain locations, for which he needs
the medkit. The robot can also fetch medkits if requested
by other agents (not shown) in the environment. A sample
domain is available at http://bit.ly/1Fko7MA. The shared re-
sources here are the two medkits - i.e. some of the plans the
agents can execute will lock the use of and/or change the po-
sition of these medkits, so as to make the other agent’s plans,
contingent on that particular resource, invalid.

Figure 1: Use case - Urban Search And Rescue (USAR).

http://bit.ly/1Fko7MA


3 Ad-hoc Human-Robot Coalitions
In this section we will look at how two agents (the human
and the robot) in our scenario, can coordinate dynamically
by forming impromptu teams in order to achieve either indi-
vidually rational or socially optimal behaviors.

3.1 Motivation
Consider the scenario shown in Figure 1. Suppose one of
CommX’s goal is to perform triage in room1, while one of
the Robot’s goals is to deliver a medkit to room1. Clearly,
if both the agents choose to do their optimal plans and plan
to use medkit1 in room2, the Robot’s plan fails (as-
suming the CommX gets there first). The robot then has two
choices - (1) it can choose to achieve some other goal, i.e.
maximize it’s own rewards, (2) it can choose to deliver the
other medkit2 from room3, i.e. maximize social good.

Indeed there are many possible ways that these agents can
interact. For example, the utility of choosing any goal may
be defined by the optimal cost of achieving that goal individ-
ually, or as a team. This in turn affects the choice whether to
form such teams or not. In the discussion that follows, we
model this goal selection (and team formation) problem as a
strategic game with perfect information.

3.2 Formulation of the Game
We refer to our static two-player strategic game Goal Alloca-
tion with Perfect Information as GAPI = 〈Φ, {Aφ}, {Uφ}〉.
The game attempts to determine, given complete informa-
tion about the domain model and goals of the other agent,
which goal to achieve and whether forming a coalition is
beneficial. The game is defined as follows -

- Players - The game has two players Φ = {H,R} the
human H and the robot R respectively.

- Actions - The actions of the agents in the strategic game
are the goals that they can select to achieve. Thus, for
each agent φ ∈ Φ we define a set of goals Gφ =

{G1
φ, G

2
φ, . . . , G

|Gφ|
φ } ⊆ G, and the action set Aφ of the

agent φ is the mapping that assigns one of these goals as
its planning goal, i.e. Aφ : Gφ 7−→ G. Note that this is
distinct from the action models defined in PDDL for each
of the individual agents (which helps the agent figure out
how this goal G is achieved, and the resultant utility).

- Utilities - Finally, as discussed previously, the utility of
an action depends on (apart from the utility of the goal
itself) the way the agent chooses to achieve it, and is
contingent also on the plans of the other agent (due to,
for example, resource conflicts), and is given by -

UH(AHi , A
R
j ) = R(GiH∪G

j
R)−min{C(π∗H), C(π∗Θ(H))}

UR(AHi , A
R
j )

= R(GiH ∪G
j
R)− C(π∗Θ(R)) if C(π∗H) > C(π∗Θ(H))

= R(GiH ∪G
j
R)−max{C(π∗R), C(π∗Θ(R))}, otherwise.

where, π∗H is the optimal plan or solution of the planning
problem defined by ΠH = 〈FO, DH , IH ,GiH〉, π∗R is the
optimal solution of ΠR = 〈FO, DR, IR,GjR〉, and π∗Θ is
the optimal solution of ΠΘ = 〈FO, Dθ, Iθ,Gθ〉, where

Θ = 〈θ,Dθ〉 is the super-agent representing the coali-
tion formed by θ = {H,R} with Iθ = IH ∪ IR and
Gθ = GiH ∪G

j
R. Here, the first term in the expression for

utility denotes the utility of the goal itself as defined in the
environment in Section 2.1, while the second term cap-
tures the resultant best case utility of plans due to agent
interactions. More on this below.

Human-centric robots. At this point we make an assump-
tion about the role of the robots in our human-robot society
- we assume that the robots exist only in the capacity of au-
tonomous assistance, i.e. in coalitions that may be formed
with humans and robots, the robot’s role is to improve the
quality of life of the humans (by possibly, in our case, re-
ducing the costs of plans) and not vice versa.

Thus, in the expression of utility, the human uses a min-
imizing term - with no interactions C(π∗H) = C(π∗Θ(H)),
otherwise C(π∗H) > C(π∗Θ(H)). Similarly, in case of
the robot, with no interactions C(π∗R) ≥ C(π∗Θ(R)) and
C(π∗H) <=> C(π∗Θ(H)) otherwise, since the interactions
may or may not be always cooperative for the robot. Note
that this formulation also takes care of the cases when the
robot goal becomes unachievable due to negative interac-
tions with the human (this is why we have the maximizing
term; the difference is triggered due to negative interactions
with the human plan in absence of coalitions). Also note that
the goal utility is using a combined goal due to the particular
action profile, this captures cases when goals have interac-
tions, i.e. a conjunction of goals may have higher (or lower)
utility than the sum of its components.

This can be easily ensured while generating plans for a
given coalition, by either discounting the costs of actions
of the robot with respect to those of the humans by a suit-
able factor, or more preferably, by just penalizing the total
cost of the human component in the composite plan more.
The assumption of course does not change the formulation
in any way, it is just more aligned with the notion of the
social robots being envisioned currently. Of course, in this
sense the utilities of both the humans and robots will now
become identical, with a minimizing cost term.

Now that we have defined the game, the question is how
do we choose actions for each agent? Remember that we
want to find solutions that will preclude the need to coordi-
nate. We can take two approaches here - we can make agents
individually rational (in which case both the human and the
robot looks for a Nash equilibrium, so neither has a reason to
defect; or we can make the agents look for a socially optimal
solution (so that sum of utilities is maximized).

3.3 Solving for Nash Equilibriums
As usual, the Nash equilibriums in GAPI are
given by action profiles 〈AHi , ARj 〉 such that
UH(AHi , A

R
j ) ≥ UH(AHk : ∀k 6=i, A

R
j ) and UR(AHi , A

R
j ) ≥

UH(AHi , A
R
k : ∀k 6=j). It is easy to prove that there is no

guaranteed Nash equilibrium in GAPI. We will instead
motivate a slightly different game GAPI-Bounded where
the robot only agrees to deviate from its optimal plan up
to a certain degree, i.e. there is a bound on the amount of
assistance the robot chooses to provide.



Definition 1.3. The differential help δ(g,GiR) provided
by the robot R with goal GiR ∈ GR, when the human H
picks goal g ∈ GH , measures the decrease in utility of
the robot upon forming a coalition with the human, and is
given by δ(g,GiR) = |C(π∗Θ(R)) − C(π∗R)|, where π∗R is
the optimal solution of ΠR = 〈FO, DR, IR,GiR〉, and π∗Θ is
the optimal solution of ΠΘ = 〈FO, Dθ, IH ∪ IR, g ∪ GiR〉,
where Θ = 〈θ = {H,R}, Dθ〉.

Thus in GAPI-Bounded the utility function is modified
from the one in GAPI as follows -

UH(AHi , A
R
i ) = R(GiH)− C(π∗H)

UR(AHi , A
R
j ) = R(GjR)− C(π∗R)

if ∃Gk : k 6=j
R ∈ GH s.t. δ(GiH , G

j
R) > {R(GjR)−C(π∗R)}−

{R(GkR) − C(π∗∗R )}, where π∗R, π∗∗R and π∗H are the
optimal plans or solutions to the planning problems
Πi
R = 〈FO, DR, IR,GjR〉, Πk

R = 〈FO, DR, IR,GkR〉 and
ΠH = 〈FO, DH , IH ,GiH〉 respectively; and otherwise -

UH(AHi , A
R
i ) = R(GiH)− C(π∗Θ(H))

UR(AHi , A
R
j ) = R(GjR)− C(π∗Θ(R))

where π∗Θ is the optimal solution of ΠΘ = 〈FO, Dθ, IH ∪
IR, g ∪GjR〉, where Θ = 〈θ = {H,R}, Dθ〉.

This basically means that if the penalty that the robot in-
curs by choosing to assist the human is so great that it could
rather do something else instead (i.e. choose another goal),
then it switches back to using its individual optimal plan, i.e.
no coalition is formed. If the individual optimal plans are al-
ways feasible (otherwise these do not participate in the Nash
equilibriums below), this leads to the following result.

Claim. 〈AHi∗ , ARj∗〉 must be a Nash equilibrium of
GAPI-Bounded when j∗ = arg maxGjR∈GR

R(GjR) −
C(πR) and i = arg maxi UH(GiH , G

j∗

R ).

Proof Sketch. Let us define the utility function of the
robot R for achieving a goal g ∈ GR by itself as τ(g) =
R(g)−C(π∗R), where π∗R is the optimal solution to the plan-
ning problem ΠR = 〈F,O, DR, IR, g〉. Further, given the
goal set GR of the robot, we set Gj

∗

R = arg maxg∈GR τ(g),
i.e. Gj

∗

R corresponds to the highest utility goal that the
robot can achieve by itself. Now consider any two goals
GjR, G

j∗

R ∈ GR, GjR 6= Gj
∗

R . We argue that ∀GiH ∈ GH ,
UR(AHi , A

R
j∗) ≥ UR(AHi , A

R
j ). This is because τ(Gj

∗

R ) ≥
τ(GjR) and by problem definition ∀i, k |UR(AHi , A

R
j∗) −

UR(AHk , A
R
j∗)| ≤ τ(Gj

∗

R ) − τ(GjR). Thus, in general, the
goal ordering induced by the function τ is preserved by
the utility function UR, and consequently ARj∗ is a dom-
inant strategy of the robot. It follows that AHi∗ such that
i∗ = arg maxi UH(GiH , G

∗
R) is the corresponding best re-

sponse for the human. Hence 〈AHi∗ , ARj∗〉 must be a Nash
equilibrium. Hence proved. �

Further, it may be noted here that there may be many such
Nash equilibriums in GAPI-Bounded and these are also
the only ones, i.e. all Nash equilibriums in GAPI-bounded
must satisfy the conditions in the above claim.

3.4 Solving for Social Good
Similarly, the socially optimal goal selection strategies are
given by the action profiles 〈AHi∗ , ARj∗〉 where {i∗, j∗} =

arg maxi,j UH(AHi , A
R
j ) + UR(AHi , A

R
j ). The socially op-

timal action profiles may not necessarily correspond to any
Nash equilibriums of either GAPI or GAPI-Bounded.

Individual Irrationality and ε−Equilibrium. Given the
way the game is defined, it is easy to see that the socially
good outcome may not be individually rational for either the
human or the robot, since the robot always has the incentive
to defect to choosingG∗R and the human will then choose the
corresponding highest utility goal for himself. This leaves
room for designing autonomy that can settle for action pro-
files 〈AH

î
, AR

ĵ
〉 referred to as ε-equilibriums, for the purpose

of social good, i.e. |UH(AHi∗ , A
R
j∗)−UH(AH

î
, AR

ĵ
)| ≤ ε and

|UR(AHi∗ , A
R
j∗) − UR(AH

î
, AR

ĵ
)| ≤ ε. Note that this devia-

tion is distinct from the concept of bounded differential as-
sistance we introduced in Section 3.3.

Price of Anarchy. The price of deviating from individual
rationality is referred to as the Price of Anarchy and is mea-

sured by POS =
UH(AH

î
,AR
ĵ

)+UR(AH
î
,AR
î

)

UH(AH
i∗ ,A

R
j∗ )+UR(AH

i∗ ,A
R
j∗ )

.

3.5 Caveats
No or Multiple Nash Equilibriums. One of the obvious
problems with this approach is that it does not guarantee a
unique Nash equilibrium, if it exists at all. This has seri-
ous implications on the problem we set out to solve in the
first place - which goals do the agents choose to plan for,
and how? Note, however, that this is not really a feature of
the formulation itself but of the domain or the environment,
i.e. the action models of the agents and the utilities in the
goals will determine whether there is a single best coalition
that may be formed given a particular situation. Thus, there
seems to be no principled way of solving this problem in a
detached manner, without any form of communication be-
tween the agents. But our approach still provides a way to
deliberate over the possible options, and communicate to re-
solve ambiguities only with respect to the Nash equilibri-
ums, rather than the whole set of goals, or even just those
in each agent’s dominant strategy, which can still provide
significant reduction in the communication overhead.

Infeasibility of the Extensive Form Game. Note here
that the utilities of the actions are calculated from the cost
of plans to achieve the corresponding goals, which involves
solving two planning problems per action. This means that,
in order to get the extensive form of GAPI, we need to solve
O(|GH |×|GR|) planning problems in total (note that solving
for πΘ gives utilities for both agents H and R), which may
be infeasible for large domains. So we need a way to speed
up our computation (either by computing an approximation



and/or finding ways to calculate multiple utility values at
once), while simultaneously preserving guarantees from our
original game in our approximate version.

Fortunately, we have good news. Note that all we require
are costs of the plans, not the plans themselves. So a promis-
ing approach towards cutting down on the computational
complexity is by using heuristic values for the initial state
of a particular planning problem as a proxy towards the true
plan cost. Note that the better the heuristic is, the better our
approximation is. So the immediate question is - What guar-
antees can we provide on the values of the utilities when we
use heuristic approximation? Are the Nash equilibriums in
the original game still preserved? This brings us to the no-
tion of “well-behaved heuristics” as follows -

Definition 1.4 A well-behaved heuristic h : S × S 7→
R+, S ⊆ FO is such that h(I,G1) ≤ h(I,G2) whenever
C(π∗1) ≤ C(π∗2), where π∗1 and π∗2 are the optimal solu-
tions to the planning problems Π1 = 〈FO, D, I,G1〉 and
Π2 = 〈FO, D, I,G2〉 respectively.

We define GAPI as a game identical to GAPI but with a
modified utility function as follows -

UH(AH
i , AR

j ) = R(Gi
H)−min{h(Gi

H , IH), h(Gi
H , IH ∪ IR)}

UR(A
H
i , AR

j )

= R(Gi
H)− h(Gj

R, IH ∪ IR) if h(Gi
H , IH) > h(Gi

H , IH ∪ IR)
= R(Gi

H)−max{h(Gj
R, IR), h(G

j
R, IH ∪ IR)}, otherwise.

Note that in order to get a heuristic estimate of an agent’s
contribution to the composite plan, we compute the heuristic
with respect to achieving the individual agent goal using the
composite domain of the super-agent, which of course gives
a lower bound on the real cost of the composite plan used to
achieve that agent’s goal only.

Claim. NEs in GAPI are preserved in GAPI.

Proof Sketch. This is easy to see because orderings
among costs are preserved by a well-behaved heuristic, and
hence ordering among utilities, which is known to keep the
Nash equilibriums unchanged. Note that the reverse does not
hold, i.e. GAPI may have extra Nash equilibriums due to the
equality in the definition of well-behaved heuristics. �

Definition 1.5 We define a goal-ordering on the goal set
Gφ of agent φ as a function f : [1, |Gφ|] 7→ [1, |Gφ|] such

that Gf(1)
φ ⊆ G

f(2)
φ ⊆ . . . ⊆ G

f(|Gφ|)
φ . This means that the

goals of an agent are such that they are all different subgoals
of a single conjunctive goal.

We will refer to the game with agents with such ordered
goal sets as GAPI (identical to GAPI otherwise).

Claim. NEs in GAPI are preserved in GAPI.

Proof Sketch. Since Gφ is goal-ordered, C(π∗f(1)) ≤
C(π∗f(2)) ≤ . . . ≤ C(π∗f(|Gφ|)), where, as usual, π∗i
is the optimal solution to the planning problem Πi =
〈FO, D, I, Giφ〉. Let us consider a non-trivial admissible
heuristic h and define a heuristic ĥ such that ĥ(I, Giφ) =

max{h(I, Giφ), ĥ(I, Gi−1
φ )}; ĥ(I, G1

φ) = h(I, G1
φ). Then ĥ

is well-behaved. Hence proved. �
These properties of GAPI-Bounded, GAPI and GAPI

enables computation of approximations, and partial profiles,
to the extensive form of GAPI, while maintaining the nature
of interactions, thus making the formulation more tractable.

4 Bayesian Modeling of Teaming Intent
4.1 Motivation
In the previous sections we considered both individual and
team plans, and as teams we considered optimal plans for
a coalition. In reality there are many ways that a particular
coalition can achieve a particular goal, and correspondingly
there are different modes of interaction between the team-
mates. We discuss four such possibilities briefly here -

• Individual Optimality - In this type of planning, each
agent computes the individual optimal plan to achieve
their goals. Note that this plan may not be actually valid
in the environment during execution time, due to factors
such as resource conflicts due to plans of the other agents.

• Joint Optimality - Here we compute the joint optimal for
a coalition; and this optimal plan is computed in favor of
the human as discussed previously in Section 3.2.

• Planning with Resource Conflicts - In (Chakraborti et
al. 2015b) we explored a technique for the robot to pro-
duce plans so as to ensure the success of the human plans
only, and explored different modes of such behavior of
the robot in terms of compromise, opportunism and nego-
tiation. Thus utilities for the human plans computed this
way is, at times, same as the joint optimal, but in general
is greater than or equal to the individual optimal and less
than or equal to the joint optimal.

• Planning for Serendipity - In (Chakraborti et al. 2015a)
we looked at a special case of multi-agent coordination,
where the robot computes opportunities for assisting the
human in the event the human is not planning to exploit
the robot’s help. Here, as in the previous case, utilities for
the human plans computed this way is again greater than
or equal to the individual optimal and less than or equal
to the joint optimal plans.

Going back to our use case in Figure 1, suppose the robot
has a goal to deliver a medkit to room1, and CommX has
a goal to conduct triage in room1, for which he also re-
quires a medkit (and his optimal plan involves picking up
medkit1 in room2). For individual optimal plans both the
robot and the human will go for medkit2 (thus, in this sit-
uation, individual optimal plans are actually not feasible).
For the joint optimal, the coalition can team up to both use
the same medkit thus achieving mutual benefit. In case the
robot is only planning to avoid conflicts, it can settle for us-
ing medkit3 which is further away, or the robot can also
intervene serendipitously by handing over medkit2 in the
hallway thus achieving higher utility through cooperation
without directly coordinating.

For our problem, this has the implication that we can no
longer be sure of the plan (and consequently the utility) even



when a particular goal has been chosen. Rather what we
have is a possible set of utilities for each goal. However we
can do better than to just take the maximum (or minimum
as the case may be) of these utilities as we did previously,
because we now know how such behaviors are being gener-
ated and so we can leverage additional information from an
agent’s beliefs about the other agent to come up with opti-
mal response strategies. This readily lends the problem to a
formulation in terms of Bayesian strategic games, which we
will discuss in the next section.

4.2 Formulation of the Game
We define our two-person static Bayesian game
GAPI-Bayesian = 〈Φ,B, AH , {AR,B}, UH , {UR,B}〉
with belief B over the type of robot as follows -

- Players - We still have two players - the humanH and the
robot R, as in the previous games.

- Actions - The actions of the players are similarly identical
to GAPI, i.e. the action set of agent φ ∈ {H,R} is the
mapping Aφ : Gφ 7−→ G.

- Beliefs - The human has a set of beliefs on the robot
B = {B1, B2, . . . , B|B|} characterized by the distribution
B ∼ P , i.e. the robot can be of any of the types in B with
probability P (B). The type of the robot is essentially the
algorithm it uses to compute the optimal plan given the
initial state and the selected goal, and thus affects the cost
of achieving the goal, and hence the utility function.

- Utilities - The utilities are defined as
UH(AHi , A

R
j ,B) = R(GiH)− C(π∗Θ(H)|B)

UR(AHi , A
R
j ,B) = R(GjR)− C(π∗Θ(R)|B)

where symbols have their usual meaning.

As before, the Nash equilibriums in
GAPI-Bayesian are given by action profiles
〈AHi , ARj 〉 such that the human has no reason
to defect, i.e.

∑
B∈B UH(AHi , A

R
j , B)P (B) ≥∑

B∈B UH(AHk : ∀k 6=i, A
R
j , B)P (B) while the robot also has

no incentive to change, i.e.
∑
B∈B UR(AHi , A

R
j , B)P (B) ≥

UH(AHi , A
R
k : ∀k 6=j , B)P (B), given the distribution P over

the beliefs B of robot type. Similarly, the socially opti-
mal solution is given by the action profiles 〈AHi∗ , ARj∗〉
where {i∗, j∗} = arg maxi,j

∑
B∈B[UH(AHi , A

R
j , B) +

UR(AHi , A
R
j , B)]P (B).

5 Discussions and Future Work
The concept of Bayesian games lends GAPI to several in-
teresting possibilities, and promising directions for future
work, with respect to how interactions evolve with time.

5.1 Unrolling the Entire Game
Notice that we formulated the game such that each of the
agents φ has a set of goals Gφ to achieve. Thus GAPI im-
mediately lends itself to a finite horizon dynamic game un-
rolled maxφ∈Φ |Gφ| times, so that the agents can figure out
their most effective long-term strategy and coalitions. Find-
ing optimal policies in such cases will involve devising more

powerful approximations, and the ability to deal with issues
such as synchronization and coalitions evolving across in-
dividual goal allocations. For GAPI-Bayesian, this also
includes evolving beliefs as we will see below.

5.2 Impact of Intent Recognition
Evolving Utilities. Often, and certainly in the examples
provided in Section 4.1, the behavior of the robot depends on
understanding the intent(s) of its human counterpart. Thus
the utilities will keep evolving based on the actions of the
human after the goal has been selected. This is even more
relevant in scenarios where communication is severely lim-
ited, when the agents in a coalition are not aware of the exact
goals that the other agents have selected.

Evolving Beliefs. Intent recognition has a direct effect on
the belief over the robot type itself. For example, as the hu-
man observes the actions of the robot, it can infer which be-
havior the robot is going to exhibit. Thus intent recognition
over the robot’s actions will result in evolving belief of the
human, as opposed to intent recognition over the human’s
activities which informed the planning process and hence
the utilities of the robot.

5.3 Implications of Implicit Preferences
Finally, as agents interact with each other over time, in dif-
ferent capacities as teammates and colleagues, their expecta-
tions over which agent is likely to form which form of coali-
tion will also evolve. This will give the prior belief over the
robot type that the human starts with, and will get updated
as further interactions occur.

6 Conclusions
In conclusion, we introduced a two-player static game that
can be used to form optimal coalitions on the go among two
autonomous members of a human-robot society, with mini-
mum prior coordination. We also looked at several proper-
ties of such games that may be used to make the problem
tractable while still maintaining key properties of the game.
Finally, we explored an extension of the game to a general
Bayesian formulation when the human is not sure of the in-
tent of the robot, and motivated the implications and expres-
siveness of this model. We believe the work will stimulate
discussion on ad-hoc interaction among agents in the context
of human-robot cohabitation settings and provide insight to-
wards generating efficient synergy.
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