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Abstract

We present a new game-theoretic framework where Bayesian
players engage in a Markov game and each has private but im-
perfect information regarding other players’ types. Instead of
utilizing Harsanyi’s abstract types and a common prior distri-
bution, we construct player types whose structure is explicit
and induces a finite level belief hierarchy. We characterize
equilibria in this game and formalize the computation of find-
ing such equilibria as a constraint satisfaction problem. The
effectiveness of the new framework is demonstrated on two
ad hoc team work domains.

Introduction
A plethora of empirical findings in strate-
gic games (Camerer, Ho, and Chong 2004;
Goodie, Doshi, and Young 2012) strongly suggest that
humans reason about others’ beliefs to finite and often low
depths. In part, this explains why a significant proportion
of participants do not play Nash equilibrium profiles of
games (Camerer 2003) because reasoning about a Nash
play requires thinking about the other player’s beliefs and
actions, and her reasoning about other’s, and so on ad
infinitum. Such reasoning is generally beyond the cognitive
capacity of humans.

Are there characterizations of equilibrium between play-
ers engaging in finite levels of inter-personal reasoning? Re-
cently, Kets (2014) generalized the standard Harsanyi frame-
work for games of incomplete information to allow players
to have finite-level beliefs. Any found equilibrium in this
framework is also a Bayes-Nash equilibrium (BNE) in a
Harsanyi framework. However, as we may expect, not every
BNE for the game is also an equilibrium between players
with finite-level beliefs.

We generalize the single-stage framework of Kets to allow
Bayesian players to play an incomplete-information Markov
game (Littman 1994). Each player may have one of many
types – explicitly defined unlike the abstract ones in the
Harsanyi framework – and which induces a belief hierar-
chy of finite depth. Within this new framework for Bayesian
Markov games (BMG) with explicit types, we generalize
the constraint satisfaction algorithm introduced by Soni et
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al. (2004) for finding BNE in Bayesian graphical games.
Key challenges for the generalization are that the space of
types is continuous and the beliefs in each type must be up-
dated based on the observed others’ actions. This makes the
types dynamic. Contextual to types that induce finite belief
hierarchies, we define a Markov-perfect finite-level equilib-
rium, and present a method for solving BMGs to obtain this
equilibrium. Motivated by behavioral equivalence (Zeng and
Doshi 2012), we use equivalence between types in order to
speed up computation of the equilibrium.

BMGs with explicit types are well-suited toward formal-
izing impromptu or ad hoc teamwork because of their em-
phasis on the uncertainty over types of others and com-
putations that provide an individual’s best response to its
bounded beliefs. Consequently, we model the multi-access
broadcast channel and foraging problems – well-known
evaluation domains for such teamwork – as a BMG and
solve it. Obtained equilibria offer locally-optimal solutions
that serve as points of comparison to the value of previ-
ous solutions in these domains. The framework also offers
a promising departure point for modeling empirical data on
strategic interactions betwen humans. This further motivates
its study and forms an important avenue of future work.

Background
Consider a 2-player single-stage foraging problem (Albrecht
and Ramamoorthy 2013) illustrated in Fig. 1(a). Robot i and
human j must load food found in adjacent cells. Players can
load if the sum of their powers is greater than or equal to
the power of the food. Thus, i or j individually cannot load
the food in the bottom-left corner, but they can coordinate
and jointly load it. Human j by himself can load the food
to the right of him. There is a possibility that the human
is robophobic and derives less benefit from the food when
loading it in cooperation with the robot.

Harsanyi’s framework (1967) is usually applied to such
games of incomplete information (human above could be
robophobic or not thereby exhibiting differing payoffs) by
introducing payoff-based types and a common prior that
gives the distribution over joint types, Θ = Θi × Θj , where
Θi(j) is the non-empty set of types of player i(j). 1 The pre-

1This interpretation is often considered naive because knowing
a player’s payoff function also implies perfectly knowing its beliefs
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(a) Players i and j seek to
load food. Sum of powers of
players≥ power level of the
food to load it.

x Ld-W Ld-N Ld-E Ld-S
Ld-W 0,0 0,0 0,1 0,0
Ld-N 0,0 0,0 0,1 0,0
Ld-E 0,0 0,0 0,1 0,0
Ld-S 1.5,1.5 0,0 0,1 0,0

x′ 6= x Ld-W Ld-N Ld-E Ld-S
Ld-W 0,0 0,0 0,1 0,0
Ld-N 0,0 0,0 0,1 0,0
Ld-E 0,0 0,0 0,1 0,0
Ld-S 1.5,1 0,0 0,1 0,0

(b) Payoff tables for states x and
robophobic x′.

βi(θ
1
i ) x x

′

θ1j 1 0
θ2j 0 0
θ3j 0 0
θ4j 0 0

βi(θ
2
i ) x x

′

θ1j 0 0
θ2j 0 0
θ3j 0 1
θ4j 0 0

βi(θ
3
i ) x x

′

θ1j 0 0
θ2j 1 0
θ3j 0 0
θ4j 0 0

βi(θ
4
i ) x x

′

θ1j 0 0
θ2j 0 0
θ3j 0 0
θ4j 1 0

βj(θ
1
j ) x x

′

θ1i 1 0
θ2i 0 0
θ3i 0 0
θ4i 0 0

βj(θ
2
j ) x x

′

θ1i 0 0
θ2i 0 0
θ3i 0 1
θ4i 0 0

βj(θ
3
j ) x x

′

θ1i 0 0
θ2i 1 0
θ3i 0 0
θ4i 0 0

βj(θ
4
j ) x x

′

θ1i 0 0
θ2i 0 0
θ3i 0 0
θ4i 1 0

(c) Conditional beliefs of player i over the payoff states and
types of j (top) and analogously for j (below).

Figure 1: (a) Single-step foraging on a 2 × 3 grid; (b) Payoffs corresponding to states in X . Rows correspond to player i and
columns to j; and (c) Conditional beliefs in the explicit Harsanyi type spaces of players i and j.

vailing theoretical interpretation (Mertens and Zamir 1985;
Brandenburger and Dekel 1993) introduces fixed states of
the game as consisting of states of nature X and the joint
types Θ (whereX would be the set of payoff functions), and
a common prior p over X × Θ. This allows an explicit defi-
nition of a type space for player i as, ΘHi = 〈Θi,Si,Σi, βi〉,
where Θi is as defined previously; Si is the collection of all
sigma algebras on Θi; Σi : Θi → Sj maps each type in Θi

to a sigma algebra in Sj ; and βi gives the belief associated
with each type of i, βi(θi) ∈ 4(X×Θj ,FX×Σi(θi)),FX
is a sigma algebra on X . Notice that βi(θi) is analogous to
p(·|θi) where p is the common prior on X ×Θ.

We define and illustrate a Bayesian game (BG), and the
induced belief hierarchy next:

Definition 1 (Bayesian game). A BG is a collection, G =
〈X, (Ai, Ri,ΘHi )i∈N 〉, where X is the non-empty set of
payoff-relevant states of nature with at least two states; Ai
is the set of player i’s actions;Ri : X×

∏
i∈N Ai → R is i’s

payoff function; and type space ΘH
i is as defined previously.

Example 1 (Beliefs in Harsanyi type spaces). Consider the
foraging problem described previously and illustrated in
Fig. 1(a). Let each player possess 4 actions that load food
from adjacent cells in the cardinal directions: Ld-W, Ld-N,
Ld-E, Ld-S. Let X = {x, x′(6= x)} and the corresponding
payoff functions are as shown in Fig. 1(b). Player i has 4
types, Θi = {θ1

i , θ
2
i , θ

3
i , θ

4
i }, and analogously for j. Σi(θ

a
i ),

a = 1 . . . |Θi| is the sigma algebra generated by the set
{θ1
j , θ

2
j , θ

3
j , θ

4
j}. Finally, example belief measures, βi(·) and

βj(·), are shown in Fig. 1(c).
Distributions, β, induce higher-level beliefs as follows:

Player i with type θ1
i believes with probability 1 that the

state is x, which is its zero-level belief, bi,0. It also believes
that j believes that the state is x because βi(θ1

i ) places prob-
ability 1 on θ1

j whose βj(θ1
j ) places probability 1 on state x.

This is i’s first-level belief, bi,1. Further, i’s second-level be-
lief, bi,2, induced from βi(θ

1
i ) believes that the state is x,

that j believes that the state is x, and that j believes that i
believes that the state is x. Thus, bi,2 is a distribution over
the state and the belief hierarchy {bj,0(θj), bj,1(θj) : θj =
θ1
j , . . . , θ

4
j}. This continues for higher levels of belief and

over other’s types from the common prior.

gives the belief hierarchy,{bi,0(θ1
i ), bi,1(θ1

i ), . . .} generated
by βi(θ1

i ). Other types for player i also induce analogous in-
finite belief hierarchies, and a similar construction induces
for player j.

Recently, Kets (2014) introduced a way to formalize the
insight that i’s level l belief assigns a probability to all events
that can be expressed by j’s belief hierarchies up to level
l − 1. Furthermore, beliefs with levels greater than l assign
probabilities to events that are expressible by j’s belief hi-
erarchies of level l − 1 only; this is a well known definition
of finite-level beliefs. We explain the formalization using an
example.

βi(θ
1
i ) x x

′

{θ1j ,θ3j} 1 0
{θ2j ,θ4j} 0 0

βi(θ
2
i ) x x

′

{θ1j ,θ3j} 0 0
{θ2j ,θ4j} 1 0

βi(θ
3
i ) x x

′

{θ1j ,θ3j} 0 0
{θ2j ,θ4j} 0 1

βi(θ
4
i ) x x

′

{θ1j ,θ3j} 0 1
{θ2j ,θ4j} 0 0

βj(θ
1
j ) x x

′

{θ1i ,θ2i } 1 0
{θ3i ,θ4i } 0 0

βj(θ
2
j ) x x

′

{θ1i ,θ2i } 0 1
{θ3i ,θ4i } 0 0

βj(θ
3
j ) x x

′

{θ1i ,θ2i } 0 0
{θ3i ,θ4i } 1 0

βj(θ
4
j ) x x

′

{θ1i ,θ2i } 0 0
{θ3i ,θ4i } 0 1

Figure 2: Player i’s and j’s conditional beliefs on payoff
states and partitions of the other agent’s type set.

Example 2 (Kets type spaces with finite-level beliefs). Let
Σi(θ

1
i ) be the sigma algebra generated by the partition,

{{θ1
j , θ

3
j}, {θ2

j , θ
4
j}}. Recall that belief βi(θ1

i ) is a probabil-
ity measure over FX × Σi(θ

1
i ). We may interpret this con-

struction as i’s type θ1
i distinguishes between the events that

j’s type is θ1
j or θ3

j and the type is θ2
j or θ4

j only. We illustrate
example βi(θai ), a = 1, . . . , 4 and βj(θbj), b = 1, . . . , 4 in
Fig. 2.

Notice that βi(θ1
i ) induces a level 0 belief, bi,0, that be-

lieves that the state of nature is x with probability 1. It also
induces a level 1 belief, bi,1, that believes j believes with
probability 1 that the state is x (it places probability 1 on
{θ1
j , θ

3
j}; both βj(θ1

j ) and βj(θ3
j ) place probability 1 on x).

However, βi(θ1
i ) does not induce a level 2 belief because

βj(θ
1
j ) places probability 1 on {θ1

i , θ
2
i }, while correspond-

ing βi(θ1
i ) and βi(θ2

i ) differ in their belief about the state
of nature. Consequently, βi(θ1

i ) induces a belief that is un-
able to distinguish between differing events expressible by
j’s level 1 belief hierarchies. The reader may verify that the
above holds true for all βi(θai ) and βj(θbj). Consequently,



the type spaces in Fig. 2 induces a finite-level belief hierar-
chy of the same depth of 1 for both agents.

Let us denote finite-level type spaces of player i using Θk
i ,

where each type for i induces a belief hierarchy of depth k.
Computation of the ex-interim expected utility of player i

in the profile, (πi, πj) given i’s type proceeds identically for
both Harsanyi and Kets type spaces:

Ui(πi, πj ; θi) =

∫
FX×Σi(θi)

∑
Ai,Aj

Ri(ai, aj , x) πi(θi)(ai)

× πj(θj)(aj) dβi(θi) (1)

However, the expected utility may not be well defined in
the context of Kets type spaces. Consider Example 2 where
Σi(θ

1
i ) is a partition of {{θ1

j , θ
3
j}, {θ2

j , θ
4
j}}. Ui is not well

defined for θ1
i if j’s strategy in its argument has distributions

for θ1
j and θ3

j that differ, or has differing distributions for θ2
j

and θ4
j . More formally, such a strategy is not comprehensible

for type θ1
i (Kets 2014). Obviously, lack of comprehensibil-

ity does not arise in the context of Harsanyi type spaces.
Finally, we define an equilibrium profile of strategies:

Definition 2 (Equilibrium). A profile of strategies, (πi)i∈N ,
is in equilibrium for a BG G if for every type, θi ∈ Θi, i ∈
N , the following holds:

1. Strategy πj , j ∈ N, j 6= i, is comprehensible for θi;
2. Strategy πi gives the maximal ex-interim expected utility,

Ui(πi, . . . , πz; θi) ≥ Ui(π′i, . . . , πz; θi)

where π′i 6= πi and Ui is as defined in Eq. 1.

Condition (1) ensures that others’ strategies are compre-
hensible for each of i’s type so that the expected utility is
well defined. Condition (2) is the standard best response re-
quirement. If the type spaces in G are the standard Harsanyi
ones, then Definition 2 is that of the standard Bayes-Nash
equilibrium. Otherwise, if G contains Kets type spaces, then
the profile is in finite-level equilibrium (FLE).

BMG with Finite-Level Types
Previously, we reviewed a framework that allows character-
izing equilibrium given belief hierarchies of finite depths. A
key contribution in this paper is to generalize this framework
endowed with finite-level type spaces to an incomplete-
information Markov game played by Bayesian players. In
this setting, types are now dynamic and a challenge is to
identify a way of updating the types. Thereafter, we intro-
duce an equilibrium that is pertinent for these games.

We define a Bayesian Markov game (BMG) as follows:
Definition 3 (BMG). A Bayesian Markov game with finite-
level type spaces (BMG) is a collection:

G∗ = 〈S,X, (Ai, Ri,Θk
i )i∈N , T,OC〉

• S is the set of physical states of the game;
• X and Ai are as defined in the previous section;
• Ri : S ×X ×

∏
i∈N

Ai → R is i’s reward function;

• Θk
i is the finite-level Kets type space of depth k;

• T : S ×
∏
i∈N

A → ∆(S) is a stochastic physical state

transition function of the Markov game; and

• OC is the optimality criterion in order to optimize over
finite or infinite steps with discount factor, γ ∈ (0, 1).

A BMG between two agents, i and j of some type θi and
θj respectively, proceeds in the following way: both agents
initially start at state st that is known to both and perform
actions ati and atj according to their strategies, respectively.
This causes a transition of the state in the next time step to
some state st+1 according to the stochastic transition func-
tion of the game, T . Both agents now receive observations,
ot+1
i = 〈st+1, atj〉 and ot+1

j = 〈st+1, ati〉, respectively, that
perfectly inform them about current state and other’s previ-
ous action. Based on these observations, their next actions,
at+1
i and at+1

j , are selected based on their strategies.

   i Food

j FoodFood

Mv-W Mv-E Ld-W Ld-N Ld-E Ld-S
Mv-W 0,-1 0,-1 0,0 0,0 0,10 0,0
Mv-E -1,-1 -1,-1 -1,0 -1,0 -1,1 -1,0
Ld-W 0,-1 0,-1 0,0 0,0 0,10 0,0
Ld-N 0,-1 0,-1 0,0 0,0 0,10 0,0
Ld-E 0,-1 0,-1 0,0 0,0 0,10 0,0
Ld-S 0,-1 0,-1 15,15 0,0 0,10 0,0

Figure 3: Extended foraging game on a larger grid and exam-
ple payoffs for a combination of physical and payoff states
(s1, x). Each physical state represents the location of both
players.

Example 3 (Extended foraging problem). We illustrate an
extended foraging problem in Fig. 3. Players i and j may
move to adjacent cells in addition to loading food as before.
However, movement is not free and incurs a small cost. Thus,
the game is now sequential progressing from one physical
state to another, where a physical state denotes the joint po-
sition of players. Payoffs now depend on both the physical
state of the game and the state of nature.

Dynamic Type Update
As we mentioned previously, players i and j engaging in a
BMG receive observations of the state and other’s previous
action in subsequent steps, ot+1

i = 〈st+1, atj〉. An obser-
vation of j’s action provides information that i may use to
update its belief, βi(θi), in its type. Recall that βi(θi) is a
distribution over (X×Θj ,FX×Σi(θi)). Consequently, the
type gets updated. We are interested in obtaining updated
distributions, βt+1

i (θi) for each θi ∈ Θi, given observation
ot+1
i . This is a simple example of using a current step obser-

vation to smooth past belief. This is given by:

βt+1
i (θi)(x, θj |o0:t+1

i ) ∝ Pr(atj |θj , st) βti (θi)(x, θj) (2)

In Eq. 2, term Pr(atj |x, θj) is obtained from j’s strategy in
the profile under consideration and indexed by θj as outlined
in the next subsection. Term βti (θi)(x, θj) is the prior.



Solution
Types defined using belief hierarchies limited to finite lev-
els may not yield equilibria that coincide precisely with
Bayesian-Nash equilibrium (Kets 2014), which requires that
the level be infinite. We define the solution of a BMG with
explicit finite-level types to be a profile of mixed strategies
in an equilibrium that we label as Markov-perfect finite-
level equilibrium. This equilibrium generalizes the FLE for-
malized in Def. 2 of the previous section. Prior to defining
the equilibrium, define a strategy of player i as a vector of

horizon-indexed strategies, πhi
4
= 〈πhi , π

h−1
i , . . . , π1

i 〉. Here,
πhi : S ×Θi → ∆(Ai) gives the strategy that best responds
with h steps left in the Markov game. Notice that each strat-
egy in the vector is a mapping from the current physical
state, player’s type space, and states of nature; this satisfies
the Markov property. We define the equilibrium next.
Definition 4 (Markov-perfect finite level equilibrium). A
profile of strategies, πhk = 〈πhi,k〉i∈N is in Markov-perfect
finite-level equilibrium (MPFLE) of level k if the following
holds:

1. Each player has a Kets type space of level k;
2. Strategy πhj,k, j ∈ N , j 6= i and at every horizon is com-

prehensible for every type of player i.
3. Each player’s strategy for every type is a best response to

all other players’ strategies in the profile and the equilib-
rium is subgame perfect.

Notice that if, instead of condition 1 above, players pos-
sess the standard Harsanyi type space, then Def. 4 gives the
Markov-perfect Bayes-Nash equilibrium.

Strategy πhi,k is a best response if its value is the largest
among all of i’s strategies given the profile of other play-
ers’ strategies. To quantify the best response, we define an
ex-interim value function for the finite horizon game that as-
signs a value to each level strategy of a player, say i, given
the observed state, i’s own type and profile of other players’
strategies. For a two player BMG G∗, each player endowed
with a level k Kets type space, this function is:

Qi(s, π
h
i,k, π

h
j,k; θi) = U∗i (s, πhi,k, π

h
j,k; θi)+

γ
∑
oi

Pr(oi|s, πhi,k, πhj,k; θi) Qi(s
′, πh−1

i,k , πh−1
j,k ; θ′i) (3)

where θ′i denotes the updated type of i and
Qi(s, π

h
i,k, π

h
j,k; θi) reduces to U∗i when h = 1. Here,

U∗i (s, πhi,k, π
h
j,k; θi) =

∫
FX×Σi(θi)

∑
Ai,Aj

Ri(s, x, ai, aj)

× πhi,k(s, θi)(ai) π
h
j,k(s, θj)(aj) dβi(θi)

Utility function, U∗i , extends Ui in Eq. 1 to the single stage
of a BMG.

Next, we focus on the term Pr(o′i|s, πhi,k, πhj,k; θi):

Pr(o′i|s, πhi,k, πhj,k; θi) =

∫
Σi(θi)

∑
Ai

T (s, ai, aj , s
′)

× πhi,k(s, θi)(ai) π
h
j,k(s, θj)(aj) dβ̂i(θi)

where β̂i(θi) is the marginal of measure βi(θi) on Σi(θi)
only and oi = 〈s′, aj〉. Subsequently, πhi,k that optimizes Qi
in Eq. 3 is a best response to given πhj,k. When the horizon
is infinite, each player possesses a single strategy that is not
indexed by horizon.

Finally, we define an ε-MPFLE which relaxes the strict
requirement of the exact equilibrium allowing a player in
approximate equilibrium to deviate if her loss due to deviat-
ing to some other strategy is not more than ε.

Algorithm for finding MPFLE
We formally proposed a BMG above and showed how dy-
namic player types are updated along with a characterization
of equilibrium in these games. In this section, we investigate
how to find such equilibria for a given BMG.

Constraint Satisfaction Problem
Vickrey and Koller present a way to compute Nash equilib-
rium in single-shot graphical games with complete informa-
tion using constraint satisfaction (Vickrey and Koller 2002).
Later, Soni et al. (Soni, Singh, and Wellman 2007) extend
their work and model the problem of finding a Bayes-Nash
equilibrium in single-shot graphical games with incomplete
information and repeated graphical games also as a con-
straint satisfaction problem (CSP). We further adapt their
methods toward finding MPFLE in BMGs.

First, we transform the BMG into an extended Bayesian
game by defining strategy for player i ∈ N as a vec-
tor of horizon-indexed strategies as elucidated previously.
Next, we formalize the CSP represented as a 3-tuple:
PE = 〈V,D,C〉. Here, V is a set of variables, V =
{v1, . . . , v|N |}, where each variable corresponds to a player
in the BMG; D is the set of domains for the variables,
D = {D1, . . . , D|N |}. The domain Di for a variable vi
(i ∈ N ) is the space of comprehensible strategies for player
i. Comprehensibility limits the size of the domain, which in
turn translates to significant computational savings in time.
C is a set of |N | |N |-ary constraints. Each constraint Ci∈N
has the scope V which is the set of all variables, and the re-
lation Ri ⊆ ×i∈NDi

2. A tuple ri ∈ Ri is considered legal
if the corresponding strategy of player i is a best response
to the strategy profile of others specified in ri. The relation
Ri only constitutes legal tuples. Next, we generate the dual
CSP from the original CSP formalized above. The variables
of the dual CSP are the constraints of the original CSP. Thus,
the dual variables are C = {C1, . . . , C|N |}. The domain of
each dual variable are the tuples of the corresponding rela-
tion in the original CSP. Thus, the dual variable Ci∈N has
|Ri| values. Finally, we add an |N |-ary equality constraint
on the dual variables. This constraint essentially performs an
intersection across the domains of each of the dual variables.
This guarantees that all players play a mutual best response
strategy and hence, commit to the same Nash equilibrium
which is in turn an MPFLE for the BMG.

2We assume a fully-connected interaction graph. However, this
representation can be easily generalized to any graphical game with
arbitrary local neighborhoods.



In general, solving a CSP involves pruning the domain of
each variable. If at any stage, any variable’s domain becomes
empty upon application of constraints, it indicates that the
CSP is unsatisfiable. In other words, there is no solution
for this CSP. Note that this method can be used to find all
solutions to the CSP. Overall, once we represent the game
as a CSP, we can easily apply any standard CSP solvers
to compute equilibria. We implement the generic procedure
described in an efficient arc consistency algorithm called
MAC3 (Liu 1998) to solve our CSP. Further, we take ad-
vantage of the sub-game perfection condition in MPFLE by
going bottom-up from a 1-step strategy to anH-step strategy
in the consistency-checking phase to ensure additional sav-
ings. The intuition is that, if a 1-step strategy profile is not
an equilibrium, then the 2-step strategy profile that includes
this 1-step non-equilibrium strategy profile is also not going
to be an equilibrium and so on.

Approximation for Mixed Strategies
Recall that a possible value of each variable is a profile of
strategies. As the level strategies may be mixed allowing
distributions over actions, the domain of each variable is
continuous. Algorithms such as MAC3 are unable to oper-
ate on continuous domain spaces. Soni et al. (2007) point
out this problem and suggest discretizing the continuous
space of mixed strategies using a τ -grid. In the context of
a BMG, given the τ -grid and player i’s strategy πhi,k, the
probability of taking an action ai ∈ Ai, πhi,k(·, ·)(ai) ∈
{0, τ, 2τ, . . . , 1}. Compared to uncountably many possibil-
ities for each strategy before, we now consider 1/τ2 en-
tries on the τ -grid. Subsequently, discretizing the continu-
ous space of mixed strategies by the τ -grid becomes a part
of initializing the domain of each variable.

However, a profile of strategies in equilibrium may not
lie on the τ -grid. Therefore, the discretization may intro-
duce error and motivates relaxing the exact equilibrium to ε-
MPFLE. Interestingly, an upper bound on εmay be obtained
for a given value of τ (Soni, Singh, and Wellman 2007). We
derive this bound for a BMG next.

Lemma 1. Let πk, π′k be two profiles of level k strate-
gies, and for any player i ∈ N , let strategies πi,k and π′i,k
be present in the above profiles, respectively. Let horizon-
indexed level k strategies πhi,k and π

′h
i,k from the above vec-

tors, for each combination of state and type, be τ -close:
|πhi,k(s, θi)(ai) − π

′h
i,k(s, θi)(ai)| ≤ τ , ∀ i, s, θi, ai. Then,

the probability of an action profile, 〈ai, ..., az〉, ∀ s, θi, ai, is
bounded:

|
∏

i,j,...,z

πhi,k(s, θi)(a
i)−

∏
i,j,...,z

π
′h
i,k(s, θi)(a

i)| ≤ |N |τ

Note that this upper bound can be refined in a straightfor-
ward way to |N |τ if we know that strategies of |N | < |N |
may deviate only.

Given Lemma 1, the induced difference in the immediate
ex-interim expected utility for a player may also be bounded
if its strategies are τ -close.

Lemma 2. Let πk and π′k be strategy profiles that are τ -
close as defined in Lemma 1. The corresponding induced dif-
ference in immediate ex-interim expected utility is bounded:

|U∗i (s, πhi,k, π
h
−i,k; θi)− U∗i (s, π

′h
i,k, π

′h
−i,k; θi)| ≤

Rmax|A||N |τ, ∀ i, s, θi

Next, we may also bound the difference in the expected
future payoff induced by two profiles that are τ -close.

Lemma 3. Let πk and π′k be strategies that are τ -close as
defined in Lemma 1. Let φTi (πhi,k(s, θi); s, θi,π

h
−i,k) denote

i’s expected future payoff. The corresponding difference in
expected future payoff is recursively bounded:

|φTi (πhi,k(s, θi); s, θi,π
h
−i,k)− φTi (π

′h
i,k(s, θi); s, θi,π

′h
−i,k)|

≤ γ(T − 1)Rmax|A||N |τ + γ|φT−1
i (πhi,k(s′, θ′i); ·)−

φT−1
i (π

′h
i,k(s′, θ

′h
i,k); ·)|

Combining Lemmas 2 and 3, we obtain the following:

Proposition 1. Let πk and π′k be strategy profiles that
are τ -close as defined in Lemma 1. Then the difference
in the expected value due to the difference in the profiles,
|QTi (πhi,k(s, θi); s, θi,π

h
−i,k)−QTi (π

′h
i,k(s, θi); s, θi,π

′h
−i,k)|

for all s ∈ S, θi ∈ Θi is bounded by εT = |A||N |τRmax(
T γT−1

γ−1 + γT−1
)

.

Proposition 1 bounds the loss suffered by any player in
moving to the adjacent joint strategy on the τ -grid. Now,
we can show that a relaxed MPFLE is preserved by the dis-
cretization.

Proposition 2 (ε-MPFLE). Let the joint strategy πk be an
MPFLE for a given BMG. Let π′k be the nearest strategy
profile on the τ -grid. Then π′k is a ε-MPFLE for the BMG,
where ε is as defined previously in Proposition 1.

Experimental Results
We implemented the MAC3 algorithm for obtaining MPFLE
as discussed earlier. We show the applicability of BMGs
toward two benchmark problem domains used in the ad
hoc team work literature: n-agent multiple access broad-
cast channel (nMABC) (Hansen, Bernstein, and Zilberstein
2004) and level-based foraging (m×m Foraging) (Albrecht
and Ramamoorthy 2013) illustrated previously; ties are bro-
ken randomly if more than one food can be loaded. Table 1
summarizes the domain statistics and parameter settings.

Domain Specifications

nMABC
|N | = 2 to 5; H = 2 to 5; |S| = 4; |A| = 4;
|Xi∈N | = up to 4;

∏
i∈N |Θi| up to 1024

3 × 3 Foraging
|N | = 2; T = 1 to 3; |S| = 81;

|A| = 25; |Xi∈N | = 2;
∏
i∈N |Θi| = 16

Table 1: Specifications of the different domains. 3 × 3 Foraging
is one of the largest benchmarks in ad hoc teamwork.



Validation First, we focus on generating MPFLE in games
of N Bayesian players. We begin by noting that the Pareto-
optimal MPFLE generated by our CSP coincides with the
optimal joint policy obtained from a decentralized POMDP
using DP-JESP (Nair et al. 2003) for the 2MABC problem.
This empirically verifies the correctness of our approach.
Multiple equilibria with pure and mixed comprehensible
strategies were found for level-1 Kets type spaces. For ex-
ample, at H = 2, we found 3 pure strategy exact MPFLE.
We also found 12 and 17 ε-MPFLE for ε = 0.17 and 0.33
respectively.

Next, to enhance significance and position BMGs (and
MPFLE) better, we present empirical results on the 2-agent 3
× 3 Foraging domain in Table 2 comparing converged (i.e.,
until all food is loaded) ex-interim values with the Harsanyi-
Bellman Ad Hoc Coordination algorithm (HBA) introduced
by Albrecht et al. (Albrecht and Ramamoorthy 2013) and
two popular multiagent reinforcement learning (MARL) ap-
proaches: JAL (Claus and Boutilier 1998) learns the action
frequencies of each player in each state and uses them to
compute expected action payoffs; and CJAL (Banerjee and
Sen 2007) is similar to JAL but learns the frequencies con-
ditioned on its own actions. Notice that BMG’s level-1 equi-
librium is Pareto-efficient implying that level-1 reasoning is
sufficient in the Foraging domain and corresponding equilib-
rium brings perspective to performances of other methods.

Method Reward Terminated
i j Timestep

BMG 2.98 1.98 3
HBA Vs HBA 2.97 1.96 5
JAL Vs HBA 1.95 2.96 6
JAL Vs JAL 1.95 2.96 6

CJAL Vs HBA 2.67 1.66 35
CJAL Vs CJAL 2.67 1.66 35

Table 2: Comparison with HBA and MARL algorithms on the 2-
agent 3 × 3 Foraging domain.

Run time for finding equilibrium Next, we explore the run
time performance of BMG and investigate how varying the
different parameters, N , H , X , Θ, τ , and ε, impacts the per-
formance and scalability in the two domains. Our computing
configuration included an Intel Xeon 2.67GHz processor, 12
GB RAM and Linux.

In Fig. 4 (top), we report the average time to compute the
first 10 equilibria for a 3-horizon n = 2 and 3MABC with
|X| = 2 and |Θ| = 16 and 64 types, respectively (4 types
for each player). The bound on ε given τ in Proposition 1
is loose. Therefore, we consider various values of ε that are
well within this bound. An example pure-strategy profile for
two players in exact equilibrium in 2MABC exhibited ex-
interim values [1.9,1.52] for players i and j, respectively.
Scalability We scale in the number of agents and illustrate
in Fig. 4 (bottom-left), increasing times for 5MABC for in-
creasing horizons as we may expect with the exact subgame-
perfect equilibrium taking just under 4 hours to compute for
H = 3 and ε = 0.1. Notice that this time increases consid-
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Figure 4: Impact of parameters on performance. Time taken
to compute: (top) MPFLE in 2MABC and 3MABC for varying τ
and ε at H = 3, (bottom-left) a pure-strategy MPFLE in 5MABC
for varying ε and H showing scalability in agents, and (bottom-
right) MPFLE in 2-agent 3×3 Foraging for varying τ and H with
ε = 0.1 showing scalability in domain size (in |A| and |S|).

erably if we compute profiles in exact equilibria.
To scale in the number of states, we experimented on

the larger 3 × 3 Foraging and illustrate empirical results
in Fig. 4 (bottom-right). The time taken to compute the first
ε-MPFLE for varying horizons and two coarse discretiza-
tions is shown. Run time decreases by about two orders of
magnitude as the discretization gets coarser for H = 2. A
pure-strategy profile for two players in exact equilibrium
in 3 × 3 Foraging exhibited ex-interim values [1.98, 0.98]
for players i and j, respectively. In general, we point out
that as the approximation increases because the discretiza-
tion gets coarser, the time taken to obtain strategy profiles in
ε-equilibria decreased by multiple orders of magnitude.

H Without TE With TE
|Θk=1| Time (s) |Θk=1| Time (s)

3
16 0.07 4 0.11
36 0.78 9 0.54
64 1335.59 16 27.2

4
16 1.01 4 0.96
36 42.6 12 14.3
64 1481.06 16 311.2

5
16 1.56 4 1.26
36 31.24 16 26.7
64 >1 day 25 3161.7

Table 3: Computational savings due to TE while computing a
pure-strategy MPFLE in 2MABC for Kets level 1 type spaces.

Type equivalence Rathnasabapathy et al. (2006) show how
we may systematically and exactly compress large type



spaces using exact behavioral equivalence. This type equiv-
alence (TE) preserves the quality of the solutions obtained,
which we verified experimentally as well. The reduced size
of player type spaces in turn reduces the number of strat-
egy profiles that need to be searched for finding an equilib-
rium. This helps lower the time complexity by several orders
of magnitude as we demonstrate. Table 3 illustrates the re-
duction in the type space due to TE in 2MABC for varying
horizons. It also shows the time savings in generating one
pure-strategy profile in equilibrium. Note the overhead in
computing the equivalence classes which is prominent for
smaller horizons. However, savings due to TE compensate
for this overhead at longer horizons and larger type spaces.

In summary, our CSP finds multiple pure and mixed-
strategy profiles in MPFLE that are exact or approximate.
Feasible run times are demonstrated for two domains, one
of which is large in the context of ad hoc teaming and we re-
ported on scaling along various dimensions. The equilibria
that we have found serve as optimal points of references for
current and future methods related to ad hoc coordination.

Discussion
There is growing interest in game-theoretic frameworks and
their solutions that can model more pragmatic types of play-
ers. To the best of our knowledge, BMG is the first formal-
ization of incomplete-information Markov games played by
Bayesian players, which integrates types that induce finite-
level beliefs into an operational framework. As repeated
games are Markov games collapsed into a single state, the
properties and solution of BMG presented in this paper are
applicable to repeated Bayesian games with incomplete in-
formation as well. Importantly, BMGs are better suited for
modeling ad hoc coordination in comparison to previous
game-theoretic frameworks.

In conclusion, we ask the following questions as we fur-
ther investigate BMGs. Does increasing the depth of reason-
ing get MPFLE “closer” to Bayes-Nash equilibria, and can
we formalize the closeness? Are there profiles in MPFLE
which do not occur in the set of Bayes-Nash equilibria even
if the Harsanyi type space reflects the finite-level beliefs?
In response, we observe that higher levels of beliefs would
require increasingly fine partitions of the types. Therefore,
MPFLE is hypothesized to coincide with Bayes-Nash equi-
librium with increasing levels. Kets (2014) establishes the
presence of Bayes-Nash equilibria that are not present in any
finite-level equilibria. However, it is always possible to con-
struct a Harsanyi extension of the finite-level type space such
that any FLE is also a Bayes-Nash equilibrium.
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