Communication-Restricted Exploration for Robot Teams

Elizabeth A. Jensen and Ernesto Nunes and Maria Gini
Department of Computer Science and Engineering, University of Minnesota
4-192 KHKH, 200 Union St SE, Minneapolis, MN 55455
{ejensen, enunes, gini} @cs.umn.edu

Abstract

In the event of an earthquake or fire, search and rescue
efforts may be delayed until it is safe for the human res-
cue team to enter the area. A team of robots could enter
in advance to provide maps, images and locations of in-
terest to the human team, allowing them to prepare their
approach when they can enter. In a disaster area, com-
munication may be limited, either due to infrastructure
being down, or because of environmental interference.
‘We propose an algorithm that makes use of a small num-
ber of robots, which spread as far as their communi-
cation allows, but which otherwise stay together while
they explore the unknown environment. We show that
the algorithm will allow the team of robots to fully ex-
plore the environment and maintain communication in
order to return the information to the waiting search and
rescue team. We also show that this can be achieved
with multiple methods of communication.

In the event of a fire or earthquake, it is not always pos-
sible for a rescue team to enter an area immediately, due
to safety concerns. To help speed the rescue process, many
have looked into using robots to explore the environment
in advance, so that points of interest, such as weak spots in
a wall or the location of survivors can be mapped out and
relayed back to the rescue team. This approach allows the
rescue team to plan their rescue efforts more precisely and
prioritize tasks. However, such an approach requires to guar-
antee that the robots reach every part of the environment.
There are multiple methods for a team of robots to explore
an unknown environment. Gage (Gage 1992) proposed three
types of coverage. In blanket coverage, the robots cover the
entire environment simultaneously. In barrier coverage, the
robots set up a perimeter around an area such that noth-
ing can pass into or out of that area without being seen
by at least one robot. In sweep coverage, the robots make
a pass over the environment and ensure every point has been
seen by at least one robot, but don’t stay in any one loca-
tion, instead moving progressively through the environment.
Choset (Choset 2001) later presented an extensive overview
of coverage path planning algorithms according to those
categories. Most coverage algorithms aim to achieve either
blanket or barrier coverage. However, both blanket and bar-

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rier coverage require enough robots to provide the full cov-
erage, and that number can be prohibitively large.

In contrast, sweep coverage can be done with a small
team, down to a single robot, if necessary, when all other
robots on the team have failed. Since the environment is un-
known, the required number of robots for blanket coverage
is also unknown, and, even if known, may well exceed the
number of robots available on site. Thus, in our approach,
we use an exploration algorithm, in which the team of robots
completes a single sweep of the environment to locate points
of interest that can be relayed to the search and rescue team.

Our main contribution is a novel algorithm that is fully
distributed and which provides full coverage of an un-
known environment, while also maintaining communication
amongst the robots, even with severe restrictions on the com-
munication type, range, and quality. The primary innovation
of this algorithm is that it uses the minimum number of mes-
sages, both in size and number of types, making it possible
to use a wide range of communication methods to accommo-
date restrictions from the environment. We provide simula-
tion results and in-depth analysis to show that the algorithm
can guarantee full exploration regardless of the number of
robots, and that the robots maintain communication.

Related Work

In recent years, multi-robot systems have gained popularity
(Arai et al. 2002). There are several advantages to the use
of a multi-robot system over the use of a single robot, in-
cluding cost, efficiency and robustness. A single robot can
be designed to efficiently complete its task, but it may then
be suitable for only a small set of tasks, and added func-
tionality increases the cost, size and energy requirements.
In addition, if even a small part fails, the robot may be un-
able to complete the task. In contrast, a multi-robot system
comprised of smaller, individually less-capable robots, with
several of each type needed to complete the different parts
of the task, can still accomplish their goal even if some of
them fail. A multi-robot system has an inherent redundancy
that increases the system’s robustness (Choset 2001).

In a centralized multi-robot system, an external controller
issues instructions to the others and keeps the group coor-
dinated. While this requires less of individual robots, the
system is also then susceptible to a complete failure if the
controller fails, even if the robots are still running. In ad-

dition, a centralized approach does not scale well, because
one machine can control only a limited number of robots
at a time. In small environments, however, a centralized ap-
proach can be effective. Stump et al. (2008), made a single
robot a base station, while the other robots formed a com-
munication bridge as they moved into the unknown region.
Similarly, Rekleitis et al. (1997) used one robot as a station-
ary beacon for another robot, thus reducing odometry error
in the robot that was moving. The centralized approach also
has the advantage of making it easy to create a global map,
which can be used to direct robots (Burgard et al. 2005;
Stachniss and Burgard 2003; Wurm et al. 2008). These ap-
proaches require constant monitoring of the robots in order
to keep the map consistent and the exploration efficient.

A distributed approach, on the other hand, is inherently
more scalable and can also take better advantage of the ro-
bustness of having multiple robots. Each robot is responsi-
ble for its own movements and data collection, and relies on
only local neighbors for coordinating exploration and dis-
persion. It may seem that the robots are working together on
a global scale, but in actuality the decisions are made indi-
vidually on a local scale. Information can be passed through-
out the group, similar to the communication bridge (Stump
et al. 2008), but using broadcast messages rather than point-
to-point messages. A distributed system thus allows an indi-
vidual to work independently, while also sharing data with
neighbors as necessary.

Ma and Yang (2007) show that the most efficient disper-
sion of mobile nodes is triangular, producing the maximal
overall coverage and minimal overlap or gap in the coverage.
Liu et al. (2005) have shown that repeated location updates
can lead to better coverage over time. Similar approaches
by Howard et al. (2002) and Cortes et al. (2004) used po-
tential fields and gradient descent, respectively, to disperse
the nodes. A recent trend has been to model distributed
multi-robot algorithms on insect behavior. The robots have
very little individual ability, but can communicate with lo-
cal neighbors and arrange themselves according to a de-
sired dispersion pattern. McLurkin and Smith (2004) have
developed both a physical robot and several algorithms for
dispersion and exploration in indoor environments. These
algorithms are similar to those in (Cortes et al. 2004;
Howard et al. 2002; Liu et al. 2005), but allow for greater
variability in the dispersion pattern, including clusters and
perimeter formations. The robots can also perform tasks
such as frontier exploration and following-the-leader.

Dirafzoon et al. (2012) provide an overview of many sen-
sor network coverage algorithms which can be applied to
multi-robot systems as well. However, many of these rely on
individual robots knowing the distance and bearing of other
robots around them, which requires more sophisticated sen-
sors. For example, Kurazume and Hirose (2000) developed
an algorithm in which the team of robots was split into two
groups, one of which remained stationary while the other
moved, and then they traded roles. This made for effective
movement through an unknown environment, but the robots
relied on sophisticated sensors to perform dead reckoning
to determine the locations of the stationary robots. On the
other hand, research has shown that a team of robots can dis-

perse into an unknown environment using only wireless sig-
nal intensity to guide the dispersion (Ludwig and Gini 2006;
Jensen and Gini 2013). This method allows the use of sim-
ple robots, without the need to carry a heavy payload of
sensors, so that the robots can run longer and explore fur-
ther. Smaller, simpler robots are also less expensive, so more
robots can be acquired for a task.

Sweep Exploration Algorithm

The objective of our algorithm is to achieve full exploration
of an unknown environment using a team of robots. We do
not need blanket or barrier coverage for our scenario, so we
can use a small team, even making do with a single robot if
needed. We also do not need an exact map, so long as our
robots can provide markers to the points of interest, so the
robots don’t need complex or expensive sensors either. We
have chosen a distributed approach to take advantage of the
robustness that comes with having multiple robots.

We assume that the robots have a proximity sensor to
avoid collisions, the ability to communicate (not restricted
to wi-fi, but could be through cameras and LEDs, chemical
signals, etc), and the means to carry and drop beacons (such
as ZigBee motes or RFID tags). We also assume the specifics
of the current environment are unknown, even if information
for the pre-disaster environment (such as a map) is available.

The main feature of our algorithm is that the robots use
communication as a means to direct their movements, not
just to send status updates. This helps to ensure that the
robots stay within range of each other, and the algorithm is
not dependent on a specific communication method to func-
tion correctly, making it more versatile both in the scenar-
ios in which it can be used, and the types of robots which
can use it for exploration. This use of communication does
require that the robots stay connected at all times, but this
restriction also provides a benefit. Because the robots spread
out as much as possible while staying connected, each in-
dividual robot has few neighbors, keeping local bandwidth
requirements low even with larger teams. Lower bandwidth
usage makes each message stand out more, and preserves
power so that the robots can function for longer stretches.

Our algorithm uses the intensity of the communication to
disperse the robots, and beacons to mark locations, but the
innovation in our approach lies in how the robots coordinate
and explore beyond the bounds of their initial dispersion.
Not allowing the team to split up gives our approach two
advantages. First, the robots are less likely to get lost, since
they will have a trail to follow to get back to the entrance.
Second, the robots will clear each room and corridor in a
methodical manner, similar to the pattern used in law en-
forcement, thus reducing the likelihood of missing an area.
The most important feature and innovation, however, is that
our algorithm will achieve full exploration independent of
the type of communication in use, including radio, line-of-
sight, and chemical methods.

Algorithm Details

The Sweep Exploration Algorithm (SEA) is based on
our previous work, the Rolling Dispersion Algorithm

(RDA), which is shown in an abbreviated form in Algo-
rithm 1 (Jensen and Gini 2013).

Algorithm 1 Rolling Dispersion Algorithm
1: loop

2: Update and share connectivity graph
3: if I am too close to an obstacle then
4: set behavior to Avoid Collisions
5: else if I am disconnected then
6: set behavior to Seek Connection
7: else if I am in a dead end then
8: drop a beacon set to Repel
9: set behavior to Retract
10: else if I am on the frontier then
11: set behavior to Guard
12: if my only neighbor is my sentry then
13: request additional explorers
14: else if [have received a request then
15: if I am an explorer then
16: drop a beacon set to unexplored
17: set behavior to Follow Path
18: else if I am a sentry w/a beacon parent then
19: drop a beacon set to unexplored
20: set behavior to Follow Path
21: else
22: set behavior to Guard
23: pass on the request
24: else if I have reached the requesting robot then
25: set behavior to Disperse
26: else if if I am an explorer then
27: set behavior to Disperse
28: else
29: set behavior to Guard

30: Apply chosen behavior

In our new approach, each robot still uses information
about connectivity with its neighbors and nearby obstacles
to determine its next move. Each robot is constantly work-
ing to avoid obstacles and maintain connectivity, but from
there we diverge from the previous algorithm. We are pri-
marily concerned about reducing the communication load,
so rather than delineate only behaviors, we have instead fo-
cused on what messages are essential to complete the explo-
ration. We have narrowed it to the following seven messages,
which also correspond to robot and beacon states, shown in
Table 1. Each message is comprised only of the state and
no other information, and can thus be encoded as a color
or 3-bit message, depending on the communication method,
making the message size extremely small.

Figure 1 shows the process of how each robot and bea-
con uses information from their local environment, includ-
ing state messages from neighboring agents, to determine
their own state, which then informs their next movement be-
havior. The beacons are not mobile, and so do not change
their behavior at all, but their state can change as a means to
pass information along to other agents, for instance request-
ing additional robots to explore a frontier or to fill a gap
from an agent failure. Robots decide between the following

five movement behaviors (reduced from the six in the RDA).

AvOID COLLISIONS: The robot uses its proximity sensors
to avoid colliding with walls, objects and other robots.
DISPERSE: The robot moves away from neighbors and ex-
plored areas using the communication signal intensity.
GUARD: The agent stays in place to act as a sentry for the
other agents. This is the only behavior that beacons use.
RETRACT: The robot moves towards the nearest agent on

the retract path.
SEEK CONNECTION: The robot seeks to reconnect with the
group if the connection is lost.

As the robots initially move into the environment, they es-
tablish a path of robots and beacons between the entrance
and the current frontier. This path can be used to guide
a robot to the edge of the explored area. As robots reach
the edge of their communication range, they will call for
more explorers, a message which will propagate back to any
robots not yet exploring or guarding an area. The robots will
eventually reach the maximum dispersion they can achieve
without losing communication. As in the initial stage, the
robot on the edge of the frontier will send out a call message,
but this time all robots will be busy. Instead the message will
propagate back to the beginning of the robot path. The robot
closest to the starting point of the path will drop a beacon to
mark the path and then switch states to explorer and follow
the call path to the frontier.

When a robot reaches a dead-end in the area it is explor-
ing, it will send a retract message and return along the retract
path. A dead-end is defined as a location where the explorer
is surrounded by walls, repel beacons, and robots on the re-
tract path, such that there is nowhere for the explorer robot
to move that is not towards a wall or an explored area. As
the robot retracts, it will drop a repel beacon to mark the ex-
plored area and reduce the likelihood of repeat explorations
of the area. The robot will return to the last branching point,
and then become an explorer again and move along another
branch to explore that frontier. The branching points are de-
termined using the robots’ proximity sensors. In our method,
each branch is explored sequentially, so we do not need to
worry about a call message going down multiple branches at
once and resulting in multiple responses.

Table 1: Messages.

Name Robot|Beacon|Behavior/Purpose

Explorer |Yes |No Explore frontier or follow call
or failure paths

Branch Yes |Yes Mark a branch point, stay in

place and relay messages

Call Path |Yes |Yes Mark path to frontier

Retractor |Yes |No Return to last branch point or

entry

Retract Path|Yes | Yes Mark return path for retrac-

tors

Repel No |Yes Mark explored areas to pre-

vent repeated coverage

Failure Path|Yes |Yes Mark path to failed robot

—>| Explorer

Dead-end? Edge of Range?
No No

Retract Path

Retractor Passed?

I Drop Beacon Call Path]'

Explorer Passed?

Yes

No
Alternate Branch?

No
No Revert to Prev. State
No
-'

Drop Repel Beacon

I Yes

Figure 1: A flowchart showing how the Sweep Exploration Algorithm is executed on each robot at each iteration. Round-
cornered rectangles represent states, diamonds represent decisions, and rectangles represent actions.

In summary, the Sweep Exploration Algorithm works by
first having the robots disperse. This movement is primar-
ily directed by the communication signal intensity between
the robots, as in previous works (Ludwig and Gini 2006;
Jensen and Gini 2013), with influence from both the robots’
proximity sensors and the messages sent between robots.
The robots will extend along a single branch until they have
fully explored it, then return to the previous branch, leaving
behind repel beacons to prevent repeat exploration, and con-
tinue exploration from the branch point. When necessary, a
robot from early in the path will be replaced by a beacon,
and the robot will then move to the frontier to continue the
exploration. When the exploration is complete, the robots all
retract to the entrance, leaving behind a trail of beacons.

Algorithm Correctness

The primary goal of the algorithm is to achieve full coverage
of the environment by having each point in the environment
viewed at least once by a robot, with the constraint that the
robots maintain communication with each other throughout
the exploration. The following analysis shows that the algo-
rithm guarantees complete exploration, so long as a single
robot remains functional, and that the robots will return to
the entrance at the end. We also show that we can use no
fewer than the seven messages/states previously described.

Preventing Infinite Loops Our first concern in complet-
ing the exploration is that of infinite loops, where the robots
end up circling an obstacle or repeatedly cycling through
a set of rooms that all connect. Our algorithm avoids this
through the use of both the retract path agents and repel bea-
cons, which mark explored areas. In Figure 2, the circle rep-

resents an explorer robot, and the squares represent retract
path agents (either robot or beacon, the form does not mat-
ter). In its current location in Figure 2a, the explorer robot
has walls on two sides, and retract path agents on the other
two sides, so it detects that it has reached a dead-end. It has
been moving down the gradient of signal intensity from the
agent it just passed (which is below it in the figure), but on
finding the dead-end, it will reverse direction and move back
up the gradient between a third and halfway to the retract
path agent before dropping a repel beacon marking the lo-
cation as explored, and begin retracting (Figure 2b). In the
worst case, the explorer robot will have actually gone to-
wards the other retract path agent (to the left in Figure 2a),
which will result in the robot exploring the loop twice, but
on the second pass, the explorer robot will reach the repel

Figure 2: The robot and beacon placements before the cycle
has been detected (a), and after blocking the cycle to prevent
infinite looping (b).

[| H x

P x I P L
[| [| [| [|

1 I
[| [| [| [|

Figure 3: A complex loop example (two solutions shown).

beacon and retract back to the entrance.

If, instead of the simple loop described above, we have a
larger environment with a loop, such as in Figure 3, when
the explorer robot reaches the intersection shown, it has a
wall on one side and retract path agents on two sides, but
the remaining side is open. Even with very simple forms of
communication, we assume that the robots can determine
the number of neighbors they have, even if they cannot dif-
ferentiate each other (no IDs). Thus, the explorer robot will
take note that it is in an intersection, where it can determine
that there are three branches and retract path agents in two
of those branches. It will retract towards one of the retract
path agents, drop a repel beacon as in the case above, and
retract back to the previous branch. Depending on the di-
rection in which it retracts, the explorer robot may end up
most of the loop path again, but the repel beacon will pre-
vent it from attempting another cycle, so again, the worst
case scenario leaves us with the majority of the cycle being
traversed at most twice. Note that by dropping the beacon
within range of one of the two retract path agents, the ex-
plorer robot leaves a path open to complete the exploration
no matter which location it chooses.

Robot and Beacon Failures The next issue is to deal with
the possibility of robot or beacon failures. Given the disas-
ter scenario we are considering, where the environment is
too dangerous for a human to enter, there is a high likeli-
hood that a robot or beacon may be destroyed during the
exploration. If the failure occurs at the edge of the explored
region, then a failed beacon means re-exploring a small area.
A failed robot would be on the frontier only if it was wait-
ing for more explorers, so the loss will have little impact,
as a new explorer would already be on the way and would
simply take the place of the failed robot. A failed explorer
would need to be replaced, which would be taken care of
when the agent closest to the frontier loses the connection
with the explorer and sends a call message for a new ex-
plorer. If a beacon fails in the middle of a path, it may not
be noticed until the robots are retracting, but at that point
they will treat the empty area as an unexplored region and
will be buffered by other beacons, so it won’t be a large gap
for them to re-explore as they find their way back to the en-
trance. If a robot between a beacon and a robot in the middle
of the path fails, then it will be treated as if it was a bea-
con, and will be replaced when the robots retract. However,
if a robot between two other robots fails in the middle of a
path, that is the most difficult failure to resolve. One of the

robots will notice the failed robot’s absence and call for a
replacement. This causes an issue because the new explorer
will find itself between two retract path agents, and probably
with walls on the other sides, which would normally mean
a loop and lead to the explorer dropping an explored beacon
and retreating. We considered a buddy system, where every
retract path agent is made up of two agents (two robots or
a robot and a beacon), but determined that the best solution
was to use a message for a failed robot, such that when the
replacement robot reached the gap, it would become a retract
path agent without dropping an explored beacon.

If more than one robot or beacon fails, they will be filled
in one at a time in the manner described above. Should it
not be possible to reconnect the path, an alternate path will
be sought (through reopening explored areas to search for
cycles), and should that fail, then the robots would use the
break in the path as the new entry point, in the hopes that
when the humans can get in, they will be able to pass the
obstruction blocking the robots, and can then pick up the
information from the waiting robots (with the beacon trail
completed beyond the obstruction). This method will com-
plete the exploration so long as a single robot survives to
the end, though in the worst case exploration of an area may
be repeated each time the agent in that area fails, but never
more times than there are failed agents.

Complete Exploration To achieve complete exploration,
we first need to ensure that there are no infinite loops and
that the algorithm will continue so long as a single robot re-
mains active. In addition, we need to show that the robots
will not miss an area. In the section on infinite loops, we
showed that preventing loops will not cut off an unexplored
area by accident. Robots will continue into an area until they
reach a dead-end. At the dead-end, the robots then work
backwards and leave behind repel beacons to block off the
area from repeated exploration. Each robot will only leave
a single repel beacon along its retract path. If it was the ex-
plorer that found the dead-end, then it leaves the repel bea-
con there. If it was a retract path agent, then it waits until all
retractor robots have passed it before it drops its own repel
beacon and retracts as well. In this way, the path remains un-
til all robots beyond that point have retracted, and only then
does the last agent on the path block it off. This continues
back to the most recent branching point along the path.

A branching point is identified by the agent in the inter-
section. The robot proximity sensors can detect obstacles up
to the width of an average corridor, so a robot can detect
when there are multiple branches. It does not matter which
branch an explorer robot chooses to explore first. When the
robots complete exploration of a branch, a repel beacon will
be placed on the edge of the intersection for that branch,
blocking it off without obstructing the other branches. The
repel beacons are treated as walls. The agent at the branch
point will decrement its branch count when a repel beacon
is placed. Eventually, this leads to the retraction path push-
ing back to a previous branching point. When there are no
branching points left, the retraction path extends to the en-
trance. When all robots have reached the entrance again,
with all branches explored the exploration is complete.

100.00%

e

Q
o
. E
2 60.00%
[=]
0
k=
3 10.00% ——SEA- 5 robots
. E - --RDA- 5 robots
20 00% —— SEA- 8 robots
- --RDA- 8 robots
0.00% : ‘
8 121 8 Ix) o I IN] b =
(=] (=] (=] o o o
Time in seconds
Figure 4: A cave-like environment with large ob- Figure 5: Percentage of environment covered over time for the SEA and
stacles and lots of open space. RDA algorithms in the cave environment.

Minimum Message Types The last property we wish to
demonstrate about our algorithm is that it would not com-
plete the exploration with fewer than the seven previously
described messages/states. Consider starting with only two
messages/states. The explorer and retract path are the most
straightforward, and both are needed in order to create the
backbone of paths to the frontier and back to the entrance.
But there is no way to request additional robots to the fron-
tier when the last explorer reaches the edge of the commu-
nication range with its nearest neighbor. So we need a third
state, the call path, which both makes the request and leads
the new explorer to the frontier. But then the explorer hits a
dead-end, and without the repel state, the robots might ex-
plore the same area over and over, or go into an infinite loop.
This brings us to four states. Without the retractor state, the
agents on the retract path wouldn’t know when to either
change to the repel state (for beacons) or retract themselves
(for robots). Without the branch state, each retractor robot
would go all the way back to the beginning, and a branch
might be cut off from further exploration because the re-
traction protocol requires that the robots leave repel beacons
along the way. We have already explained the need for the
failure path state, making seven messages/states.

Experiments and Results

We used simulation to test the algorithm’s viability, and ran
our experiments using ROS/Stage. We use the cave environ-
ment and the same number of robots and maximum robot
speed as used in previous experiments with the RDA for
comparison. The environment, shown in Figure 4, is very
open, and has large obstacles at irregular intervals and non-
uniform shapes, with wide open areas and potential loops.
All the robots start in a cluster in the area between the three
obstacles in the upper left corner.

We ran sets of experiments with five and eight robots.
The reported percentage coverage is averaged over 10 ex-
periments for each set. In both cases, SEA achieved full ex-
ploration faster than RDA. With five robots, our algorithm

was 1.59 times faster, with an average of 120.67 seconds
to complete the exploration, compared to 192 seconds using
RDA. With eight robots, our algorithm was 1.48 times faster,
with an average for 108.83 seconds compared to 161 sec-
onds. With SEA, our experiments started with a higher per-
centage of coverage than RDA, due to the way the robots are
clustered at the start to prevent collisions on start-up (since
SEA uses a different initial dispersion method), but facing in
different directions, so they have a large field of view from
the starting point, but even accounting for that (by adding
the 10 seconds it took RDA to go from its starting cover-
age to SEA’s starting coverage) our algorithm would average
118.83 seconds, which is still 1.35 times faster. The average
time to complete the exploration and the percentage covered
at a given time are shown in Figure 5 for both algorithms.
We believe that SEA reaches full coverage faster than RDA
because robots use fewer messages and spend less time pro-
cessing incoming messages when deciding their next move.

Conclusions

We have developed a distributed algorithm which allows a
team of robots to completely explore an unknown environ-
ment while staying connected at all times. The algorithm
requires fewer robots than would be needed for blanket cov-
erage, but still provides the necessary information about the
environment. We have shown that the algorithm achieves full
exploration so long as at least one robot remains active un-
til the end, and that upon completion, the remaining active
robots will return to the exit, leaving behind a trail of bea-
cons that can be used by the rescue team at a later time.
Our simulation experiments demonstrate that the algorithm
works and is faster than our previous algorithm. In future
work, we will test the algorithm in larger and more complex
environments and in physical experiments.

Acknowledgment: Partial support is gratefully acknowl-
edged from NSF grant IIS-1208413.

References

T. Arai, E. Pagello, and L. E. Parker. Guest editorial ad-
vances in multirobot systems. Robotics and Automation,
IEEE Transactions on, 18(5):655-661, October 2002.

W. Burgard, M. Moors, C. Stachniss, and F.E. Schneider.
Coordinated multi-robot exploration. Robotics, IEEE Trans-
actions on, 21(3):376-386, June 2005.

Howie Choset. Coverage for robotics — a survey of recent
results. Annals of Mathematics and Artificial Intelligence,
31:113-126, 2001.

J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage
control for mobile sensing networks. Robotics and Automa-
tion, IEEE Transactions on, 20(2):243-255, April 2004.

A. Dirafzoon, S. Emrani, S. M. Amin Salehizadeh, and
M. B. Menhaj. Coverage control in unknown environments
using neural networks. Artificial Intelligence Review, pages
237-255, 2012.

D. W. Gage. Command control for many-robot systems.
In 19th Annual AUVS Technical Symposium, pages 22-24,
1992.

Andrew Howard, Maja J. Mataric, and Gaurav S. Sukhatme.
Mobile sensor network deployment using potential fields:
A distributed, scalable solution to the area coverage prob-
lem. In Proceedings of the International Symposium on
Distributed Autonomous Robotic Systems, pages 299-308,
2002.

E. A. Jensen and M. Gini. Rolling dispersion for robot
teams. In Proc. Int’l Joint Conference on Artificial Intel-
ligence (IJCAI), pages 2473-2479, 2013.

R. Kurazume and S. Hirose. An experimental study of a
cooperative positioning system. Autonomous Robots, pages
43-52, 2000.

Benyuan Liu, Peter Brass, Olivier Dousse, Philippe Nain,
and Don Towsley. Mobility improves coverage of sensor
networks. In MobiHoc ’05: Proc. 6th ACM Int’l Symposium
on Mobile ad hoc Networking and Computing, pages 300—
308, New York, NY, USA, 2005. ACM.

L. Ludwig and M. Gini. Robotic swarm dispersion using
wireless intensity signals. In Proc. Int’l Symposium on Dis-
tributed Autonomous Robotic Systems (DARS), pages 135-
144, 2006.

Ming Ma and Yuanyuan Yang. Adaptive triangular de-
ployment algorithm for unattended mobile sensor networks.
Computers, IEEE Transactions on, 56(7):946-847, July
2007.

J. McLurkin and J. Smith. Distributed algorithms for disper-
sion in indoor environments using a swarm of autonomous
mobile robots. In Proc. Int’l Symposium on Distributed Au-
tonomous Robotic Systems (DARS), 2004.

Ioannis Rekleitis, Gregory Dudek, and Evangelos Milios.
Multi-robot exploration of an unknown environment, effi-
ciently reducing the odometry error. In Proc. Int’l Joint Con-
ference on Artificial Intelligence (IJCAI), volume 2, pages
1340-1345, Nagoya, Japan, August 1997. Morgan Kauf-
mann Publishers, Inc.

C. Stachniss and W. Burgard. Exploring unknown en-
vironments with mobile robots using coverage maps. In
Proc. Int’l Joint Conference on Artificial Intelligence (1J-
CAI), 2003.

E. Stump, A. Jadbabaie, and V. Kumar. Connectivity man-
agement in mobile robot teams. In Proc. IEEE Int’l Con-
ference on Robotics and Automation (ICRA), pages 1525—
1530, May 2008.

K. M. Wurm, C. Stachniss, and W. Burgard. Coordinated
multi-robot exploration using a segmentation of the envi-
ronment. In Proc. IEEE/RSJ Int’l Conference on Intelligent
Robots and Systems, pages 1160—1165, Sept. 2008.

