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Abstract

In this article, I show the robustness of optimality of explo-
ration ratio against the number of agents (agent population)
under multiagent learning (MAL) situation in nonstation-
ary environments. Agent population will affect efficiency of
agents’ learning because each agent’s learning causes noisy
factors for others. From this point, exploration ratio should be
small to make MAL effective. In nonstationary environments,
on the other hand, each agent needs explore with enough
probability to catch-up changes of the environments. This
means the exploration ratio need to be significantly large. I
investigate the relation between the population and the effi-
ciency of exploration based on a theorem about relations be-
tween the exploration ratio and a lower boundary of learning
error. Finally, it is shown that the population of the agents
does not affect the optimal exploration ratio under a certain
condition. This consequence is confirmed by several experi-
ments using population games with various reward functions.

Introduction
Exploration is an indispensable behavior for learning agents
especially under nonstationary environments. The agent
needs to explore in a certain ratio (exploration ratio) perma-
nently to catch up changes of the environment. On the other
hand, in multi-agent learning (MAL) situation, exploration
of an agent causes noise to other agents. So, agents need to
keep the exploration ratio as small as possible to help oth-
ers to learn. So, there is a trade-off problem of choosing the
“large-or-small” exploration ratio in MAL under nonstation-
ary environments.

Focusing on real-world problems, we can find several ap-
plications of MAL under nonstationary environments. Re-
source allocations like traffic managements and smart-grid
controls are typical problems of such applications. One of
difficulties in such applications is open-ness, by which the
environments may increase or decrease available resources
continuously. Also, the population of agents may change
over time. In order to handle such open-ness, we need to
develop a method to choose suitable behavior parameters of
agents like exploration ratio. And, as the first step to estab-
lish the method, we need to know relation among such pa-
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rameters (especially, the exploration ratio), properties of the
environments, and learning performance of agents.

Related Works
Choosing and controlling the exploration ratio has been
studied mainly for stationary but noisy environments or
for single learning agents (Zhang and Pan 2006; Martinez-
Cantin et al. 2009; Rejeb, Guessoum, and M’Hallah 2005;
Tokic 2010; Reddy and Veloso 2011). The most of these
works focused on relation between efficiency of total per-
formance of agents and learning speed in the balance of ex-
ploration and exploitation.

No-regret learning also provides a means for agents to
learn and reach equilibrium in action-selection for multi-
agent and probabilistic environments (Gordon, Greenwald,
and Marks 2008; Hu and Wellman 1998; Jafari et al. 2001;
Greenwald and Jafari 2003). However, the most of these
studies assume that the environments are stationary so that
learning ends when agents reach equilibrium.

Minority games and its dynamical variations has been
studies by (Challet and Zhang 1998; Catteeuw and Mand-
erick 2011). They investigate the case of stationary environ-
ments and try to find relations among parameters and agent
performances. For nonstationary setting, (Galstyan and Ler-
man 2002; Galstyan and andKristina Lerman 2003) investi-
gate numerical analysis of behaviors of agents to changing
resource capacities.

For MAL and nonstationary environments, (Noda 2013)
proposed a formalization based on the concept of advanta-
geous probabilities, and derived a theorem about the lower
boundary of learning error for a given exploration ratio. In
this article, I follow the result of this work, and investigate
what factors in MAL will affect the optimal value of the
exploration ratio under a kind of resource sharing problem
called population games.

Formalization and Theorems
This section will provide a formalization of MAL in nonsta-
tionary environments.

Population Game
In this article, we focus on a set of simplified games called
population games (PGs) in which multiple agents play and
learn to make decisions.



In a PG, a large number of agents participate. Each agent
selects one of the limited choices and gets a reward on the
basis of the choice. The reward is decided only by the num-
ber of agents who select the same choice.

Formally, a population game PG is defined as follows:

PG = 〈A,C, r〉 , (1)

where A = {a1, a2, · · · , aN} is a set of agents,
C = {c1, c2, · · · , cK} is a set of choices, and r =
{ra|a ∈ A} is a set of reward functions. A reward func-
tion ra(c;dā) determines the reward for agent a who selects
choice c under the distribution of other agents dā. The distri-
bution dā is a vector [ dā,c|c ∈ C ] where dā,c is the number
of other agents who select choice c. Under this definition,
each reward function ra is assumed to return stochastic val-
ues. In other words, the environment of the PG is stochastic.

Advantageous Probability
Here, advantageous probability (AP) ρa(c;dā) for each
agent a is introduced to define the probability that choice
c will return a larger reward than any other choices under
distribution dā. Formally, AP is defined as follows:

ρa(c;dā) = P (∀c′ ∈ C : ra(c;dā) ≥ ra(c′;dā)) ,(2)

where, P (〈condition〉) indicates the probability that the
‘〈condition〉’ holds. Choice c̊ is defined as the most advan-
tageous choice of ρa when the probability ρa(̊ca) becomes
maximum over all choices in C.

c̊a = arg max
c∈C

ρa(c). (3)

It is assumed that each agent cannot know the choices of
other agents or their distribution dā, but can learn the AP by
its experiences on the basis of the receiving rewards. A prob-
ability function ρ̃a(c) indicates learning AP, i.e., the prob-
ability learned by agent a. Agent a is exploiting when a is
selecting the most advantageous choice c̊ to learn its AP ρ̃a,
and agent a is exploring when a is not selecting c̊.

The ideal distribution d̊ is defined as follows:

d̊ =
[
d̊c|c ∈ C

]
d̊c : number of agents who are exploiting

with choice c.

Similarly, the ideal distribution without agent a is denoted
as d̊ā. Using these definitions, the ideal AP for agent a is
defined as follows:

ρ̊a(c) = ρa(c; d̊ā). (4)

Learning and Exploration
Suppose that the purpose of each agent is to select the most
advantageous choice, i.e., each agent tries to select a choice
that maximizes the probability of obtaining a larger reward
than other choices. Therefore the learning goal of each agent
is to make its learned AP ρ̃a closer to the ideal AP ρ̊a. If all
agents reach ρ̃a = ρ̊a, the PG reaches the Nash equilibrium.

The above assumption is slightly different from the con-
ventional formalization of the reinforcement learning, where

Figure 1: Relations among Ideal, Learning, and Practical
Advantageous Probability

the agents aim to maximize average reward (AR). AP is in-
troduced instead of AR to avoid scaling and variation issues
of reward functions. When reward values are directly han-
dled, as is the case for AR, we need to introduce a frame-
work to classify variations in reward functions. By intro-
ducing AP, we can simplify the reward structure as binary
(large-or-small) relations of values and can keep the frame-
work simple.

To learn successfully, each agent must explore all possible
choices. In addition, when a PG is nonstationary and reward
functions may change over time, agents need to continue to
explore the environment beyond the equilibrium point, so
that each agent in a PG continuously explores within a cer-
tain probability.

Because some agents explore simultaneously, the distri-
bution d varies from the ideal distribution d̊. A distribution
under agents’ exploration is called as the practical distribu-
tion and denote it as ď. Similarly, an explored distribution
without agent a is denoted as ďā. Using these definitions for
distribution, the practical AP for agent a is defined as fol-
lows:

ρ̌a(c) = ρa(c; ďā). (5)
Figure 1 illustrate the relationship among ideal AP ρ̊,

learning AP ρ̃ and practical AP ρ̌. At a certain time, ρ̊ is de-
termined by assuming that all agents exploit according to ρ̃.
To adjust ρ̃ to ρ̊ through learning, all agents explore possible
choices so that the practical AP ρ̌ separates from ρ̊. Because
each agent can acquire a reward according to ρ̌, ρ̃ moves to
ρ̃′ to approximate ρ̌ by learning. Because of the changes in
ρ̃ and the environment during learning, the target AP ρ̊ also
move to ρ̊′.

Lower Boundary of Learning Error
(Noda 2013) showed a theorem about relation between
lower boundary of learning error and exploration ratio in a
certain condition, as described below.

Let’s consider the following assumptions:
• Each agent uses the ε-greedy policy so that the agent a

selects the most advantageous choice c̊a with probability
(1 − ε) (exploiting mode) and selects one of all possible
choices c with probability ε (exploring mode). In the ex-
ploring mode, assume that all choices are selected with
the same probability.
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Figure 2: Changes in Lower Boundaries of Error to d̊′
ā by

Exploration Ratio ε

• Each agent collects reward information for each choice
by performing selections T times according to the above
exploration policy. After then, the agent adapts its own
learning APs using the reward information.

• The changes in the environment can be modeled as a ran-
dom walk of d̊ā in the parameter space of ρ̊a, where the
variance of each step in the random walk is denoted by
σ2. The original ideal AP at time t is denoted as ρ̊a and
that at time t + T , i.e., after T cycles of random walk,
as ρ̊′a as shown in figure 1. The parameters to determine
these APs are denoted as d̊ā and d̊′

ā respectively.
Under these assumptions, (Noda 2013) showed the fol-

lowing corollary about learning error in this MAL situation:
Corollary 1
The lower boundary of learning error of the above MAL sit-
uation is given as the following inequality:

Error = E
[∥∥∥d̊′

ā − d̃′
ā

∥∥∥2
]

(6)

≥ Tσ2 +
Kg̃a
εT

+ εN(2− K + 1

K
ε), (7)

where g̃a is a trail of the inversed Fisher information matrix
of the AP ρa as follows:

g̃a = tr (Ga)

G−1
a =

[
E
[
∂ log ρa
∂dā,i

· ∂ log ρa
∂dā,j

]
ij

]
(8)

Figure 2 shows the relationships between the lower bound-
ary and ε. Each curve corresponds to changes in the bound-
ary for different values of T . As shown in this graph, there
is a positive value for ε that minimizes the lower boundary
of the squared learning error. However, a significant error
remains even if ε is at the optimal value.

We can also revise equation (7) for incremental learn-
ing so that the agents use the exponential moving aver-
age(EMA) x̄t+1 ← (1 − α)x̄t + αxt to estimate pa-
rameters rather than the simple moving average x̄t+τ ←

(1/T )
∑T
τ=1 xt+τ . It is known that EMA can approximate

the simple moving average when T = 2/α−1 (Noda 2009b;
2009a). Therefore, we can get the following boundary:

Error ≥ (2− α)σ2

α
+

αKg̃a
(2− α)ε

+ εN(2− K + 1

K
ε).(9)

Agent Population and Optimal Exploration
Ratio

Based on the boundary relation shown in the previous sec-
tion, I try to investigate relations among the optimal explo-
ration ratio and parameters of a given PG.

First of all, we assume that the relation between the av-
erage error and the exploration ratio forms the same shape
of equation (7) or equation (9). Then, define L(ε) to be the
boundary shown as equation (7):

L(ε) = Tσ2 +
Kg̃a
εT

+ εN(2− K + 1

K
ε). (10)

From the definition given by equation (8), g̃a can be ex-
panded as follows:

g̃a = tr (Ga)

G−1
a =

∑
c∈C

ρa(c) · ∂ log ρa(c)

∂dā,i
· ∂ log ρa(c)

∂dā,j


ij


(11)

The purpose of the analysis here is to determine the opti-
mal ε that makes L minimum. Because it is hard to solve it
directly, we introduce the following assumptions:

• Reward rc of a choice c is determined according to dc by
the following uniform function ψ with the capacity pa-
rameter γc:

∀c : rc(dc) = ψ

(
dc
γc

)
, (12)

where, γc are positive constants, and ψ is a monotone de-
creasing function (ψ′ < 0).

• Under the equilibrium situation of learning of all agents,
the reward of each choice c is identical. In other words,
if the learning reaches the equilibrium, the agent distribu-
tion d makes the reward rc equal for any choice c. The
identical reward is denoted by r̄. From equation (12), d
and r̄ can be calculated as follows:

∀c : dc =
γc
Γ
N

rc = r̄ = ψ

(
N

Γ

)
,

where Γ is a sum of γc, that is, Γ =
∑
c γc.

• Under the equilibrium, APs for any agent a are also iden-
tical. Therefore,

∀a∀c : ρa(c) =
1

K
.



• The distribution d gets perturbation ∆dc by agents’ ex-
ploration. Because of the perturbation, actual rewards rc
include noise ∆rc. Here, we suppose that ∆dc is small
enough so that ∆rc can be approximated as follows:

∆rc = ∆dc ·
∂rc
∂dc

= ∆dc · ψ′
(
N

Γ

)
· 1

γc

=
∆dc
γc

ψ̄′, (13)

where ψ̄′ indicates ψ′
(
N
Γ

)
.

• When the distribution dc and reward rc for choice c gets a
small perturbation, AP for any choice c′ is also affected.
Here, we suppose that the degree of change of AP for
other choice c′, denoted by ∂ρa(c′)

∂dc
, is in proportion to the

probability density of the reward for the choice c′ at the
average:

∂ρa(c′)

∂dc
∝

{
ψ̄′

γc
· P (∆rc′ = 0) ; when c′ = c
−ψ̄′

(K−1)γc
· P (∆rc′ = 0) ; when c′ 6= c

Under these assumptions, I tried to calculate ∂L
∂ε to deter-

mine the optimal ε.
Here, consider a probability density function, P (∆dc),

for the perturbation ∆dc, which indicates a probability den-
sity of the case where the perturbation of the distribution
dc equals a certain value ∆dc. Because the perturbation is
caused by agents’ exploration, P (∆dc) can be expanded as
follows (see Appendix):

P (∆dc) ∼ G(∆dc; εN(
1

K
− γc

Γ
),

εN [(
1

K
+
γc
Γ

)− ε( 1

K2
+
γc
Γ

)]),(14)

where, G(x;µ, σ2) is a Gaussian distribution with average µ
and variance σ2.

Based on equation (13) and equation (14), we can approx-
imate P (∆rc) as follows:

P (∆rc) = G(∆rc; εNψ̄′(
1

Kγc
− 1

Γ
),

εN
ψ̄′

2

γ2
c

((
1

K
+
γc
Γ

)− ε( 1

K2
+
γc
Γ

)))

Here, assume that the value of P (∆rc = 0) can be ap-
proximated by the probability density ∆rc at the average
(rc = E [rc]). Then, we can expand P (∆rc = 0) as follows:

P (∆rc = 0) ∼ G(0; 0, εN
ψ̄′

2

γ2
c

((
1

K
+
γc
Γ

)− ε( 1

K2
+
γc
Γ

)))

=
1√

2πεN ψ̄′2

γ2
c

(( 1
K + γc

Γ )− ε( 1
K2 + γc

Γ ))

(15)

We denote the value of equation (15) as λc. This λc can
be simplified by introducing Hc as follows:

λc =
1

ψ̄′
√
N
√
Hc(ε)

Hc(ε) =
2π

γ2
c

· (( 1

K
+
γc
Γ

)− ε( 1

K2
+
γc
Γ

))

Using these values, (i, j)-th element of Fisher informa-
tion matrix I = G−1 can be calculated as follow (see Ap-
pendix):

Iij = E
[
∂

∂di
log ρa(c) · ∂

∂dj
log ρa(c)

]
∝ K

N
Rij , (16)

where

Rij =
∑
c∈C

κicκjc
γiγjHc(ε)

κic =

{
1 ;when c = i

1
1−K ;when c 6= i

.

Using a matrix R whose (i, j)-th element is Rij , we can
get g̃a defined in equation (11) as follows (see Appendix):

g̃a ∝ N

K
tr
(
R−1

)
, (17)

From equation (10),L(ε) can be calculated as follows (see
Appendix):

L(ε) ∝ Tσ2 +
NQ

εT
+ εN(2− K + 1

K
ε), (18)

where

Q = tr
(
R−1

)
.

As a result of above derivations, we can get the following
equation from equation (18):

∂L
∂ε

∝ N

(
1

T

∂

∂ε

(
Q

ε

)
+

∂

∂ε

(
ε

(
2− K + 1

K
ε

)))
(19)

The optimal exploration ratio, under which the lower bound-
ary of learning error L(ε) become minimum, should make
∂L
∂ε zero. Therefore, the optimal ratio ε∗ should satisfy the
following equation:

1

T

∂

∂ε∗

(
Q

ε∗

)
+

∂

∂ε∗

(
ε∗
(

2− K + 1

K
ε∗
))

= 0

(20)

Unfortunately, the equation is still complex to determine
the ε∗ for given parameters. However, we can find the im-
portant relation between the agent population N and the op-
timal ratio ε∗. In equation (20), T and K are independent
parameters to N . Also, Q is calculated only from ε, K and
γi. Therefore, equation (20) does not include any factor of
N . This means that the agent population N never affect to
the optimal ratioε∗.

From this implication, we can derive the following prag-
matic know-how:



When we can evaluate learning performance with a
small number of agents and find the optimal explo-
ration ratio for the problem, we can use the same ratio
for the problem with the large number of agents.

Experiments
In order to confirm the implication of the previous section,
I conducted experiments using several PG described below.
The game PG is defined as follows:

PG = 〈A,C, r〉
A = {a1, a2, · · · , a100}
C = {foo,bar,baz}
r = {ra|∀a ∈ A,∀c ∈ C : ra(c) = r(c)}

r(c) = B − (dc/γc); (21)
B = 10.0 : constant offset
γc : capacity for choice c

γfoo = 100;

γbar = 20;

γbaz = 10 at beginning.

Nonstationary-ness is introduced to the game by allowing
γbaz to follow a random walk, where its value is changed for
every time step. The change is taken from a uniform distri-
bution in [−0.01, 0.01].

Each agent has its own reward table that indicates an ex-
pected reward for each choice. In every cycle, each agent
selects the best choice (in exploitation) or another possible
choice (in exploration) on the basis of its own reward table.
When the agent gets an actual reward because of its choice,
the agent updates its table. In this experiment, we suppose
that each agent applies ε-greedy policy for action selection.

In the first experiments, I changed the total population of
agent. In the experiment, the agent populations are set from
100 to 1000. I run 10 times for each setting, and calculate the
average error defined by equation (6). Figure 3 shows the re-
sult of the experiment. In this graph, the horizontal and ver-
tical axes are exploration ratio ε and the average error. Each
line corresponds to each agent population (100 ∼ 1000). We
can find that each line is scaled by the agent population and
form similar shapes. The more important point of this result
is that the optimal ε that makes the each error curve mini-
mum is never changed by the agent population. In each line
in figure 3, the error hits the bottom around ε = 0.02. This
supports the implication of the previous section.

I also conducted two more experiments using different re-
ward functions in the same PG . Instead of equation (21),
the following two functions are used:

rb(c) =
γc
dc

(22)

rc(c) =

√
γc
dc

(23)

Figure 4 and 5 are the results of the experiments using the
reward function of equation (22) and 23, respectively. Both
graphs show the similar changes of errors as shown in fig-
ure 3. In the case of figure 4, each line hits the bottom around

ε = 0.03. In the case of figure 5, each line hits the bottom
around ε = 0.05. These results also support the above im-
plication, that is,

the agent population N never affect to the optimal ε.

Discussion
In the analytic derivation of the relation between agent pop-
ulation N and the optimal exploration ratio ε∗, I introduced
several assumptions. Here, I discuss about adequacy of the
assumptions.

First of all, we assume that the average error curve form
the same shape of its lower boundary. Also, we use AP as the
learning target in the derivation, while the actual learning in
the experiments tries to maximize AR. These assumptions
are somewhat strong. Fortunately, however, the actual error
curves shown in figure 2 is quite similar to the actual results
shown in figure 3, 4 and 5. So, we will apply the results an-
alytic derivation as a general investigation of actual learning
phenomena.

We also assume that the reward function is uniform with
capacity parameters. This seems reasonable in the most of
the resource sharing problem, because such definitions of
reward function can cover the situation of resource sharing
widely. We will also be able to relax and generalize this con-
dition by the further investigation.

From the viewpoint of prior coordinations in multiagent
learning, the results of previous sections tell an interesting
feature of MAL. The results say that the optimal exploration
ratio is stable when the agent population increases. There-
fore, as mentioned in section , we can start the learning with
a small number of agents to determine the optimal explo-
ration ratio, and increase the number of agents with the same
ratio. Another way to utilize the results is that, we start the
online learning with the fixed number of agents to find the
optimal ratio, and make the learning system open for agents
to join the system with restricting them to use the same ex-
ploration ratio.

Conclusion
In this article, I investigated what factors in MAL will af-
fect the optimal value of the exploration ratio for a subset
of population game. The investigation implies the optimal
exploration ratio can be determined independent of the total
population of the agents. This feature is confirmed by sev-
eral experiments of MAL for a certain kind of population
games with various reward functions. Using the feature, we
can know that it is reasonable to use the same exploration
ratio for MAL with the large population of agents when the
ratio can be confirmed to be optimal for the game with the
small population of agents.

There are several further issues of this work. We might be
able to find another relation among the exploration ratio and
other parameters like the number of resources K, learning
speed (stepsize) α, or nonstationary factor σ2. Also, there
are several weaknesses in the derivations of the relation be-
tween agent population and optimal exploration ratio, for ex-
ample, a strong assumption that the average error is equal to
its lower boundary given by the corollarie.



Appendix: Derivations

Derivation of Equation (14)

The perturbation ∆dc can be divided into two factors, de-
creasing factor caused by exploration of agents who consider
choice c is the best, and increasing factor caused by explo-
ration of agents who consider other choice c′ is the best.
When we denote the probability densities of the both factors
as P (∆−dc) and P (∆+dc), respectively, P (∆dc) can be
expanded as follows:

P
(
∆−dc

)
=

〈probability of the number of agents in
γcN

Γ agents do not choose c with the
probability ε

〉

= B(−∆dc; ε,
γcN

Γ
)

∼ G(∆dc;−
γcNε

Γ
,
γcN

Γ
· ε(1− ε))

P
(
∆+dc

)
=

〈probability of the number of agents in
N agents choose c with the probabil-
ity ε

K

〉
= B(∆dc;

ε

K
,N)

∼ G(∆dc;
Nε

K
,N

ε

K
(1− ε

K
))

P (∆dc) = P
(
∆−dc

)
∗ P

(
∆+dc

)
∼ G(∆dc; εN(

1

K
− γc

Γ
),

εN [(
1

K
+
γc
Γ

)− ε( 1

K2
+
γc
Γ

)]),

where, B(x; p, n) is a Binomial distribution with success
probability in each trial p and number of trials n, and
G(x;µ, σ2) is a Gaussian distribution with average µ and
variance σ2.

Derivation of Equation (16)

Iij = E
[
∂

∂di
log ρa(c) · ∂

∂dj
log ρa(c)

]
= E

[
1

ρa(c)

∂ρa(c)

∂di
· 1

ρa(c)

∂ρa(c)

∂dj

]
∝

∑
c

ρa(c)

(
1

ρ2
a(c)

·
(
ψ̄′

γi

)
κicλc

(
ψ̄′

γj

)
κjcλc

)
=

∑
c

Kψ̄′
2
λ2
c

κicκjc
γiγj

=
∑
c

Kψ̄′
2 1

ψ̄′
2
NHc(ε)

κicκjc
γiγj

=
K

N

∑
c

κicκjc
γiγjHc(ε)

=
K

N
Rij .

Derivation of Equation (17)

g̃a = tr (G)

= tr
(
I−1

)
∝ tr

([
K

N
R

]−1
)

=
N

K
tr
(
R−1

)
.

Derivation of Equation (18)

L(ε) ∝ Tσ2 +
Kg̃a
εT

+ εN(2− K + 1

K
ε)

= Tσ2 +
KNQ

εTK
+ εN(2− K + 1

K
ε)

= Tσ2 +
NQ

εT
+ εN(2− K + 1

K
ε).
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Figure 3: Changes of Average Learning Error in the case of
reward function rc(dc) = B − (dc/γc)
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Figure 4: Changes of Average Learning Error in the case of
reward function rc(dc) = γc/dc
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Figure 5: Changes of Average Learning Error in the case of
reward function rc(dc) =

√
γc/dc


